Advertisement

Chemical Research in Chinese Universities

, Volume 35, Issue 2, pp 311–318 | Cite as

Adsorption of Dyes Using Multi-walled Carbon Nanotube Hydrogel

  • Meng Yu
  • Miao LiuEmail author
Article
  • 22 Downloads

Abstract

The hydrophilic multi-walled carbon nanotube(MWCNT) hydrogel was prepared using acrylic acid, acrylamide and hydrophilic MWCNT. The orthogonal experiment was applied to optimize the synthetic conditions. The MWCNT hydrogel was characterized by Fourier transform infrared spectrophotometer(FTIR) and scanning electron microscopy(SEM) analysis. The MWCNT hydrogel was used as the adsorbent to adsorb water-soluble cationic dye. This study evaluated the adsorption performance of hydrogels on four dyes of safranine T, crystal violet, malachite green and methylene blue in water. The effects of the amount of hydrogel, the size of hydrogel, pH, and the temperature on the adsorption performance were investigated. The adsorption kinetic and adsorption isotherm curves were measured. The experimental results show that the MWCNT hydrogel can be easily separated from water and the adsorption capacity is much greater compared to the hydrogel without MWCNT. The MWCNT hydrogels can be used in wastewater treatment with a great potential.

Keywords

Multi-walled carbon nanotube Poly(acrylamide/acrylic acid) Hydrogel Dye Adsorption 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Chen W. H., Li G., Xu F. C., Pan X., Wen L. N., Du L. N., Journal of Zhejiang Agricultural Sciences, 2014, (2), 264Google Scholar
  2. [2]
    Zahrim A. Y., Hilal N., Water Resources and Industry, 2013, (3), 23Google Scholar
  3. [3]
    Constantin M., Asmarandei I., Harabagiu V., Ghimici L., Ascenzi P., Carbohydrate Polymers, 2013, 91(1), 74CrossRefGoogle Scholar
  4. [4]
    Shi Y. R., Li Q., Wang L., Wang A. Q., Chemical Industry and Engineering Progress, 2011, 30(10), 2294Google Scholar
  5. [5]
    Yatin N., Manish P., Chinese Chemical Letters, 2013, 24(11), 1005CrossRefGoogle Scholar
  6. [6]
    Hemant M., Suprakas S., International Journal of Biological Macromolecules, 2016, 88, 66CrossRefGoogle Scholar
  7. [7]
    Wang F., Yao J., Yu C., Chen H., L., Yi Z. J., Martin M. F. C., ACS Sustainable Chemistry & Engineering, 2014, 2(5), 1219CrossRefGoogle Scholar
  8. [8]
    Lang L., Jiang L., Zhu D., Chen P., Liu R. L., Feng J. W., Environmental Science & Technology, 2014, 37(12), 166Google Scholar
  9. [9]
    Wang W. X., Bo L. J., Xu H., Chen H., Chemistry, 2015, 78(11), 1006Google Scholar
  10. [10]
    Han J. X., Wan H. S., Li L., Chemical Industry Times, 2015, 29(11), 1Google Scholar
  11. [11]
    Zhou L. D., Cao T., Wang H. X., Yu H. H., Proceedings of 2011 China Functional Materials Technology and Industry Forum, Chongqing, 2011, 4708Google Scholar
  12. [12]
    Xie G., Mao N., Zhou L. C., Pan D., Li Y. F., Chinese Journal of Environmental Engineering, 2015, 9(3), 1117Google Scholar
  13. [13]
    Liu Z. J., Liang X. T., Zhang H. Y., New Chemical Materials, 2015, 43(5), 202Google Scholar
  14. [14]
    Liu W. Y., Yang L. Z., Yu M., Liu M., Chinese Journal of Analytical Chemistry, 2016, 44(5), 707Google Scholar
  15. [15]
    Liu R. J., Zhang Y. W., Wen C. W., Tang J., Experimental Technology and Management, 2010, 27(9), 52Google Scholar
  16. [16]
    Zhang C., Chai X. S., Luo X. L., Spectroscopy and Spectral Analysis, 2010, 30(1), 247Google Scholar
  17. [17]
    Liu P., Jiang L. P., Zhu L. X., Wang A. Q., Industrial & Engineering Chemistry Research, 2014, 53(11), 4277CrossRefGoogle Scholar
  18. [18]
    Li Z. L., Tang M., Dai J. W., Wang T. S., Bai R. K., Polymer, 2016, 85(2), 67CrossRefGoogle Scholar
  19. [19]
    Ding C. M., Gao X. F., Han Y. L., Ma X. S., Wang J. W., Liu S. B., Zhang K., Energy Chem., 2015, 24(1), 45CrossRefGoogle Scholar
  20. [20]
    Chen Y., Wang S. P., Applied Chemical Industry, 2016, 45(1), 127Google Scholar
  21. [21]
    Ofomaja A., Ho S., Bioresource Technology, 2008, 99, 5411CrossRefGoogle Scholar
  22. [22]
    Zhang J., Deng H. P., Yabutani T., Yasuzawa M., Environmental Science, 2011, 32(11), 3348Google Scholar
  23. [23]
    Jiang L. P., Liu P., Journal of Colloid and Interface Science, 2014, 426, 64CrossRefGoogle Scholar
  24. [24]
    Tucker P. C., Lita A., Latturner S. E., Chemistry of Materials, 2013, 25(9), 1480CrossRefGoogle Scholar
  25. [25]
    Kamel A., Mohammad S., Falah B., J. Hazard. Mater., 2011, 188, 414CrossRefGoogle Scholar
  26. [26]
    Wu N. M., Li Z. K., Environmental Science, 2013, 34(6), 2263Google Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH 2019

Authors and Affiliations

  1. 1.College of New Energy and EnvironmentJilin UniversityChangchunP. R. China

Personalised recommendations