Skip to main content
Log in

Construction of pH-Triggered DNA Hydrogels Based on Hybridization Chain Reactions

Chemical Research in Chinese Universities Aims and scope

Cite this article

Abstract

As a novel type of bio-functional material, DNA hydrogels have attracted more and more attention due to their successful applications in 3D cell culturing and tissue engineering for the designable and programmable responsiveness. Herein, we have developed a pH-triggered DNA hydrogel based on a clamped hybridization chain reaction(C-HCR). In this system, a DNA switch was designed, which can release the initiator strand in a controllable way via the formation of the C-G·C+ triplex under the pH stimuli. While the pre-gelation solution is stable in neutral environment, the C-HCR will trigger the sol-gel transition as the pH decreased to 5.0. This strategy has endowed the DNA hydrogel with good controllability for triggering, which also shows potential in intellectual responsiveness to certain stimuli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. He C. L., Kim S. W., Lee D. S., J. Control. Release, 2008, 127(3), 189

    Article  CAS  Google Scholar 

  2. Tsitsilianis C., Soft Matter, 2010, 6(11), 2372

    Article  CAS  Google Scholar 

  3. He X., Fan J. W., Wooley K. L., Chem.-Asian J., 2016, 11(4), 437

    Article  CAS  Google Scholar 

  4. Yu L., Ding J. D., Chem. Soc. Rev., 2008, 37(8), 1473

    Article  CAS  Google Scholar 

  5. Hunt J. A., Chen R., van Veen T., Bryan N., J. Mat. Chem. B, 2014, 2(33), 5319

    Article  CAS  Google Scholar 

  6. Shibata H., Heo Y. J., Okitsu T., Matsunaga Y., Kawanish T., Takeuchi S., Proc. Natl. Acad. Sci. USA, 2010, 107(42), 17894

    Article  CAS  Google Scholar 

  7. Um S. H., Lee J. B., Park N., Kwon S. Y., Umbach C. C., Luo D., Nat. Mater., 2006, 5, 797

    Article  CAS  Google Scholar 

  8. Xing Y. Z., Chen E. J., Yang Y., Chen P., Zhang T., Su Y. W., Yang Z. Q., Liu D. S., Adv. Mater., 2011, 23(9), 1117

    Article  CAS  Google Scholar 

  9. Guo W. W., Lu C. H., Qi X. J., Orbach R., Fadeev M., Yang H. H., Willner I., Angew. Chem. Int. Ed., 2014, 53(38), 10134

    Article  CAS  Google Scholar 

  10. Li J., Zheng C., Cansiz S., Wu C. C., Xu J. H., Cui C., Liu Y., Hou W. J., Wang Y. Y., Zhang L. Q., Teng I. T., Yang H. H., Tan W. H., J. Am. Chem. Soc., 2015, 137(4), 1412

    Article  CAS  Google Scholar 

  11. Lu S. S., Wang S., Zhao J. H., Sun J., Yang X. R., Chem. Commun., 2018, 54(36), 4621

    Article  CAS  Google Scholar 

  12. Lee J. B., Peng S., Yang D., Roh Y. H., Funabashi H., Park N., Rice E. J., Chen L., Long R. M., Wu M., Luo D., Nat. Nanotechnol., 2012, 7, 816

    Article  CAS  Google Scholar 

  13. Liu D. S., Balasubramanian S., Angew. Chem. Int. Ed., 2003, 42(46), 5734

    Article  CAS  Google Scholar 

  14. Zheng J., Li J. S., Jiang Y., Jin J. Y., Wang K. M., Yang R. H., Tan W., Anal. Chem., 2011, 83(17), 6586

    Article  CAS  Google Scholar 

  15. Asanuma H., Liang X., Yoshida T., Komiyama M., ChemBioChem, 2001, 2(1), 39

    Article  CAS  Google Scholar 

  16. Qiao Y. J., Qian Y., Liu M. F., Liu N. N., Tang X. X., Chem. Res. Chinese Universities, 2019, 35(5), 837

    Article  CAS  Google Scholar 

  17. Cheng E. J., Xing Y. Z., Chen P., Yang Y., Sun Y. W., Zhou D. J., Xu L. J., Fan Q. H., Liu D. S., Angew. Chem. Int. Ed., 2009, 48(41), 7660

    Article  CAS  Google Scholar 

  18. Liu H. Y., Cao T. Y., Xu Y., Dong Y. C., Liu D. S., Int. J. Mol. Sci., 2018, 19(6), 10

    CAS  Google Scholar 

  19. Wang J. B., Chao J., Liu H. J., Su S., Wang L. H., Huang W., Willner I., Fan C. H., Angew. Chem. Int. Ed., 2017, 56(8), 2171

    Article  CAS  Google Scholar 

  20. Song P., Ye D. K., Zuo X. L., Li J., Wang J. B., Liu H. J., Hwang M. T., Chao J., Su S., Wan L. H., Shi J. Y., Wang L. H., Huang W., La R., Fan C. H., Nano Lett., 2017, 17(9), 5193

    Article  CAS  Google Scholar 

  21. Lee H. Y., Jeong H., Jung I. Y., Jang B., Seo Y. C., Lee H., Lee H., Adv. Mater., 2015, 27(23), 3513

    Article  CAS  Google Scholar 

  22. Liu R. D., Huang Y. S., Ma Y. L., Jia S. S., Gao M. X., Li J. X., Zhang H. M., Xu D. M., Wu M., Chen Y., Zhu Z., Yang C. Y., ACS Appl. Mat. Interfaces, 2015, 7(12), 6982

    Article  CAS  Google Scholar 

  23. Wang F. A., Liu X. Q., Willner I., Angew. Chem. Int. Ed., 2015, 54(4), 1098

    Article  CAS  Google Scholar 

  24. Liu X. Q., Lu C. H., Willner I., Acc. Chem. Res., 2014, 47(6), 1673

    Article  CAS  Google Scholar 

  25. Idili A., Vallee-Belisle A., Ricci F., J. Am. Chem. Soc., 2014, 136(16), 5836

    Article  CAS  Google Scholar 

  26. Hu Y. W., Cecconello A., Idili A., Ricci F., Willner I., Angew. Chem. Int. Ed., 2017, 56(48), 15210

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huajie Liu or Dongsheng Liu.

Additional information

Supported by the National Natural Science Foundation of China(Nos.21890731, 21534007, 21821001, 21722310).

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Chen, J., Dong, Y. et al. Construction of pH-Triggered DNA Hydrogels Based on Hybridization Chain Reactions. Chem. Res. Chin. Univ. 36, 243–246 (2020). https://doi.org/10.1007/s40242-019-0034-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-019-0034-1

Keywords

Navigation