Skip to main content
Log in

A Triode-like Enzyme-free Catalytic Circuit with Junction Fuel

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Target detection circuits have been previously designed, which are propelled by conventional PCR, isothermal amplification and strand-displacement reaction. These detection circuits obtain the target signal via the replication of the target strand, the aggregation of the signal particles or the branch migration. Here we constructed a triode-like enzyme-free catalyst strand-displacement circuit for target DNA detection. The target strand triggered the reaction and released the fluorescence signal strand circularly through branch migration. However, the main challenge of strand-displacement reaction is the signal leakage. Therefore, we designed a double strand structure “junction fuel”, which was used to increase the binding energy across the displacement process. Ultimately, the leakage of the system obtained stable inhabitation due to the junction fuel strand. The limit of detection of the system was as low as 0.11 nmol/L and the gain of the system was as high as 28-fold(the concentration of target was 50 nmol/L). Furthermore, the process of the system was visualized vividly in the reaction curve through the kinetic simulation implemented, which suggests that the combination of the kinetic simulation and the experiment exhibits a promising prospect towards the use of strand-displacement circuit in analytical, diagnostic application and synthetic biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Yurke B., Andrew J. T., Allen P. M. J., Nature, 2000, 406(2000), 605

    CAS  PubMed  Google Scholar 

  2. Simmel F. C., Yurke B., Singh H. R., Chem. Rev., 2019, 119(10), 6326

    CAS  PubMed  Google Scholar 

  3. Song J., Li Z., Wang P., Meyer T., Mao C., Ke Y., Science, 2017, 357(2017), 3377

    Google Scholar 

  4. Wang D., Song J., Wang P., Pan V., Zhang Y., Cui D., Ke Y., Nat. Protoc., 2018, 13(10), 2312

    CAS  PubMed  Google Scholar 

  5. Fan S., Chen J., Ji B., Gao C., Jiang K., Liu Y., Song J., Chinese Science Bulletin, 2018, 64(10), 1027

    Google Scholar 

  6. Fan S., Wang D., Kenaan A., Cheng J., Cui D., Song J., Small, 2019, 15(26), 1805554

    Google Scholar 

  7. Chen W., He B., Li C., Zhang X., Wu W., Yin X., Fan B., Fan X., Wang J., J. Med. Microbiol., 2007, 56(2007), 603

    CAS  PubMed  Google Scholar 

  8. Zhao Y., Chen F., Li Q., Wang L., Fan C., Chem. Rev., 2015, 115(22), 12491

    CAS  PubMed  Google Scholar 

  9. Wang X., Yan N., Song T., Wang B., Wei B., Lin L., Chen X., Tian H., Liang H., Advanced Biosystems, 2017, 1(6), 1700060

    Google Scholar 

  10. Ho N. R. Y., Lim G. S., Sundah N. R., Lim D., Loh T. P., Shao H., Nat. Commun., 2018, 9(1), 3238

    PubMed  PubMed Central  Google Scholar 

  11. Sun X., Wei B., Guo Y., Xiao S., Li X., Yao D., Yin X., Liu S., Liang H., J. Am. Chem. Soc., 2018, 140(31), 9979

    CAS  PubMed  Google Scholar 

  12. Fern J., Scalise D., Cangialosi A., Howie D., Potters L., Schulman R., ACS Synth Biol., 2017, 6(2), 190

    CAS  PubMed  Google Scholar 

  13. Seelig G., Soloveichik. D., Zhang. D. Y., Winfree E., Science, 2006, 314(2006), 1585

    CAS  PubMed  Google Scholar 

  14. Karunanayake M. A., Yu Q., Leon-Duque M. A., Zhao B., Wu R., You M., J. Am. Chem. Soc., 2018, 140(28), 8739

    Google Scholar 

  15. Shi C., Liu Q., Ma C., Zhong W., Anal. Chem., 2014, 86(1), 336

    CAS  PubMed  Google Scholar 

  16. Zhao Y., Zhou L., Tang Z., Nat. Commun., 2013, 4(2013), 1493

    PubMed  Google Scholar 

  17. Song T., Eshra A., Shah S., Bui H., Fu D., Yang M., Mokhtar R., Reif J., Nat. Nanotechnol., 2019, 14(11), 1075

    CAS  PubMed  Google Scholar 

  18. Rothemund P. W., Nature, 2006, 440(7082), 297

    CAS  PubMed  Google Scholar 

  19. Ji B., Song J., Wang D., Kenaan A., Zhu Q., Wang J., Sonderskov S. M., Dong M., Langmuir, 2019, 35(11), 4140

    CAS  PubMed  Google Scholar 

  20. Thubagere A. J., Li W., Johnson R. F., Chen Z., Doroudi S., Lee Y. L., Izatt G., Wittman S., Srinivas N., Woods D., Winfree E., Qian L., Science, 2017, 357(6356), No. eaan6558

    PubMed  Google Scholar 

  21. Deng H., Liu Q., Wang X., Huang R., Liu H., Lin Q., Zhou X., Xing D., Biosens. Bioelectron., 2017, 87(2017), 931

    CAS  PubMed  Google Scholar 

  22. Zhu W., Su X., Gao X., Dai Z., Zou X., Biosens. Bioelectron., 2014, 53(2014), 414

    CAS  PubMed  Google Scholar 

  23. Wang J., Jiang X., Han H., Biosens. Bioelectron., 2016, 82(2016), 26

    CAS  PubMed  Google Scholar 

  24. Ma Z. Y., Ruan Y. F., Xu F., Zhao W. W., Xu J. J., Chen H. Y., Anal. Chem., 2016, 88(7), 3864

    CAS  PubMed  Google Scholar 

  25. Song T., Liang H., J. Am. Chem. Soc., 2012, 134(26), 10803

    CAS  PubMed  Google Scholar 

  26. Song T., Xiao S., Yao D., Huang F., Hu M., Liang H., Adv. Mater., 2014, 26(35), 6181

    CAS  PubMed  Google Scholar 

  27. Tavallaie R., McCarroll J., Le Grand M., Ariotti N., Schuhmann W., Bakker E., Tilley R. D., Hibbert D. B., Kavallaris M., Gooding J. J., Nat. Nanotechnol., 2018, 13(11), 1066

    CAS  PubMed  Google Scholar 

  28. Wei X., Zhou W., Sanjay S. T., Zhang J., Jin Q., Xu F., Dominguez D. C., Li X., Anal. Chem., 2018, 90(16), 9888

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Canoura J., Wang Z. W., Yu H. X., Alkhamis O., Fu F. F., Xiao Y., J. Am. Chem. Soc., 2018, 140(31), 9961

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Ramlal S., Mondal B., Lavu P. S., N B., Kingston J., Int. J. Food Microbiol, 2018, 265(2018), 74

    CAS  PubMed  Google Scholar 

  31. Song Y., Shi Y., Huang M., Wang W., Wang Y., Cheng J., Lei Z., Zhu Z., Yang C., Angew. Chem. Int. Ed. Engl., 2019, 58(8), 2236

    CAS  PubMed  Google Scholar 

  32. Xiong X., Shi X., Liu Y., Lu L., You J., Analytical Methods, 2018, 10(3), 365

    CAS  Google Scholar 

  33. Yang J., Jiang S. X., Liu X. R., Pan L. Q., Zhang C., ACS Applied Materials & Interfaces, 2016, 8(49), 34054

    CAS  Google Scholar 

  34. Wang S. S., Ellington A. D., Chem. Rev., 2019, 119(10), 6370

    CAS  PubMed  Google Scholar 

  35. Frank-Kamenetskii M., Nature, 1987, 328(6125), 17

    CAS  PubMed  Google Scholar 

  36. Qiao Y., Qian Y., Liu M., Liu N., Tang X., Chem. Res. Chinese Universities, 2019, 35(5), 837

    CAS  Google Scholar 

  37. Li B., Ellington A. D., Chen X., Nucleic. Acids Res., 2011, 39(16), No. e100

    Google Scholar 

  38. Shi K., Dou B., Yang C., Chai Y., Yuan R., Xiang Y., Anal. Chem., 2015, 87(16), 8578

    CAS  PubMed  Google Scholar 

  39. Watson J. D., Crick J. D., Nature, 1953, 171(1953), 737

    CAS  PubMed  Google Scholar 

  40. Qian L., Winfree E., Bruck J., Nature, 2011, 475(7356), 368

    CAS  PubMed  Google Scholar 

  41. Qian L., Winfree E., Science, 2011, 332(6034), 1196

    CAS  PubMed  Google Scholar 

  42. Gao Z., Xia H., Zauberman J., Tomaiuolo M., Ping J., Zhang Q., Ducos P., Ye H., Wang S., Yang X., Lubna F., Luo Z., Ren L., Johnson A. T. C., Nano Lett., 2018, 18(6), 3509

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang C., Wang Z., Liu Y., Yang J., Zhang X., Li Y., Pan L., Ke Y., Yan H., J. Am. Chem. Soc., 2019, 141(43), 17189

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Song.

Additional information

Supported by the National Key Research and Development Program of China(No.2017YFC1200904), the National Natural Science Foundation of China(Nos.11761141006, 21605102) and the Natural Science Foundation of Shanghai, China (Nos.19520714100, 19ZR1475800).

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, T., Wang, X., Fan, S. et al. A Triode-like Enzyme-free Catalytic Circuit with Junction Fuel. Chem. Res. Chin. Univ. 36, 261–267 (2020). https://doi.org/10.1007/s40242-019-0025-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-019-0025-2

Keywords

Navigation