Skip to main content

Advertisement

Log in

CXCR4 Peptide Conjugated Au-Fe2O3 Nanoparticles for Tumor-targeting Magnetic Resonance Imaging

  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Peptide-functionalized Au-Fe2O3 nanoparticles(termed as anti-CXCR4-Au-Fe2O3 NPs) have been constructed through conjugation of dumbbell-like Au-Fe2O3 NPs with C-X-C motif chemokine receptor 4(CXCR4) binding cyclic peptide. One dumbbell-like Au-Fe2O3 NP composes an Au NP[(3.3±0.3) nm in diameter] for conjugating CXCR4 binding cyclic peptide through Au-S covalent bond and a Fe2O3 NP[(8.7±0.8) nm in diameter] for using as T2-weighted magnetic resonance imaging(MRI) contrast agent. The anti-CXCR4-Au-Fe2O3 NPs have reasonable biocompatibility and integration of T2-weighted MRI contrast and tumor-targeting functionalities. The anti-CXCR4-Au-Fe2O3 NPs exhibit strong interactions with two kinds of breast tumor cells, MCF-7 cells and MDA-MB-231 cells, and high negative contrast in MRI of MDA-MB-231 tumor bearing mouse with 62% decreasing of MRI signal, indicating that the anti-CXCR4-Au-Fe2O3 NPs can recognize tumor with high efficacy and specificity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dempsey M. F., Condon B., Hadley D. M., Seminars in Ultrasound, CT and MRI, 2002, 23(5), 392

    Article  PubMed  Google Scholar 

  2. Willinek W. A., Schild H. H., Eur. J. Radiol., 2008, 65(1), 2

    Article  PubMed  Google Scholar 

  3. Li D. Z., Chen H. D., Bi F., Wang Z. X., Chin. J. Anal. Chem., 2016, 44(10), 1609

    Article  CAS  Google Scholar 

  4. Shao Y. P., Cherry S. R., Farahani K., Meadors K., Siegel S., Silverman R. W., Marsden P. K., Phys. Med. Biol., 1997, 42(10), 1965

    Article  CAS  PubMed  Google Scholar 

  5. Baker M., Nature, 2010, 463(7283), 977

    Article  CAS  Google Scholar 

  6. Baker M., Nat. Methods, 2010, 7(12), 957

    Article  CAS  Google Scholar 

  7. Lee D. E., Koo H., Sun I. C., Ryu J. H., Kim K., Kwon I. C., Chem. Soc. Rev., 2012, 41, 2656

    Article  CAS  PubMed  Google Scholar 

  8. Ling D., Lee N., Hyeon T., Acc. Chem. Res., 2015, 48(5), 1276

    Article  CAS  PubMed  Google Scholar 

  9. Shen Z. Y., Wu A. G., Chen X. Y., Mol. Pharmaceutics, 2017, 14(5), 1352

    Article  CAS  Google Scholar 

  10. Schleich N., Po C., Jacobs D., Ucakar B., Gallez B., Danhier F., Préat V., J. Controlled Release, 2014, 194(28), 82

    Article  CAS  Google Scholar 

  11. Chen F., Cai W. B., Small, 2014, 10(10), 1887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shi S. X., Yang K., Hong H., Chen F., Valdovinos H. F., Goel S., Barnhart T. E., Liu Z., Cai W. B., Biomaterials, 2015, 39, 39

    Article  CAS  PubMed  Google Scholar 

  13. Liu J. X., Chen H. D., Fu Y., Li X. D., Chen Y. X., Zhang H. M., Wang Z. X., J. Mater. Chem. B, 2017, 5, 8554

    Article  CAS  Google Scholar 

  14. Morshed R. A., Muroski M. E., Dai Q., Wegscheid M. L., Auffinger B., Yu D., Han Y., Zhang L., Wu M., Cheng Y., Lesniak M. S., Mol. Pharmaceutics, 2016, 13(6), 1843

    Article  CAS  Google Scholar 

  15. Chen H. D., Li X. D., Liu F. Y., Zhang H. M., Wang Z. X., Mol. Pharmaceutics, 2017, 14(9), 3134

    Article  CAS  Google Scholar 

  16. Sharma S., Kotamraju V. R., Mölder T., Tobi A., Teesalu T., Ruoslahti E., Nano Lett., 2017, 17(3), 1356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li T., Mello-Thoms C., Brennan P. C., Breast Cancer Res. Treat., 2016, 159(3), 395

    Article  CAS  PubMed  Google Scholar 

  18. de Clercq E., Nat. Rev. Drug Discovery, 2003, 2(7), 581

    Article  CAS  PubMed  Google Scholar 

  19. Demmer O., Dijkgraaf I., Schumacher U., Marinelli L., Cosconati S., Gourni E., Wester H. J., Kessler H., J. Med. Chem., 2011, 54(21), 7648

    Article  CAS  PubMed  Google Scholar 

  20. Demmer O., Frank A. O., Hagn F., Schottelius M., Marinelli L., Cosconati S., Brack-Werner R., Kremb S., Wester H. J., Kessler H., Angew. Chem., Int. Ed., 2012, 51(32), 8110

    Article  CAS  Google Scholar 

  21. Maro S. D., Trotta A. M., Brancaccio D., Leva F. S. D., Pietra V. L, Ieranò C., Napolitano M., Portella L., D’Alterio C., Siciliano R. A., Sementa D., Tomassi S., Carotenuto A., Novellino E., Scala S., Marinelli L., J. Med. Chem., 2016, 59(18), 8369

    Article  CAS  PubMed  Google Scholar 

  22. Yang M., Cheng K., Qi S. B., Liu H. G., Jiang Y. X., Jiang H., Li J. B., Chen K., Zhang H. M., Cheng Z., Biomaterials, 2013, 34, 2796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yu H., Chen M., Rice P. M., Wang S. X., White R. L., Sun S H., Nano Lett., 2005, 5(2), 379

    Article  CAS  PubMed  Google Scholar 

  24. Xu C. J., Xie J., Ho D., Wang C., Kohler N., Walsh E. G., Morgan J. R., Chin Y. E., Sun S. H., Angew. Chem., Int. Ed., 2008, 47(1), 173

    Article  CAS  Google Scholar 

  25. Cheng K., Yang M., Zhang R. P., Qin C. Q., Su X. H., Cheng Z., ACS Nano, 2014, 8(10), 9884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenxin Wang.

Additional information

Supported by the National Natural Science Foundation of China(No.80151459).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, G., Chen, H., Yu, S. et al. CXCR4 Peptide Conjugated Au-Fe2O3 Nanoparticles for Tumor-targeting Magnetic Resonance Imaging. Chem. Res. Chin. Univ. 34, 584–589 (2018). https://doi.org/10.1007/s40242-018-8010-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-018-8010-8

Keywords

Navigation