Skip to main content
Log in

Thermodynamic Evaluation of NaF-MF n (M=Be, U, Th) Systems for Molten Salt Reactor

  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

The phase diagrams of NaF-BeF2, NaF-ThF4 and NaF-UF4 systems were assessed based on thermodynamic principles, and diverse thermodynamic models were adapted to different systems. Associate solution model (ASM) was used to describe the Gibbs energies of liquid phase of the NaF-BeF2 system, whereas other systems(NaF-ThF4 and NaF-UF4) were treated with the substitutional solution model(SSM) and intermediate compounds were described as stoichiometric compounds according to the Neumann-Kopp rule. All the thermodynamic model parameters were optimized by the least squares procedure until good coincidence was achieved between the calculated results and the experimental data. The derived thermodynamic parameters will be merged into the NaF-BeF2-ThF4-UF4 database to develop the thorium molten salt reactor(TMSR) project.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Reference

  1. Beneš O., Beilmann M., Konings R. J. M., J. Nucl. Mater., 2010, 405(2), 186

    Article  CAS  Google Scholar 

  2. Wang K., Cheng J. H., Zhang P., Zuo Y., Xie L. D., J. Univ. Sci. Technol. B, 2014, 36(12), 1666

    CAS  Google Scholar 

  3. Beneš O., Konings R. J. M., J. Chem. Thermodyn., 2009, 41(10), 1086

    Article  CAS  Google Scholar 

  4. Thoma R. E., Insley H., Hebert G. M., Friedman H. A., Weaver C. F., J. Amer. Ceram. Soc., 1963, 46(1), 37

    Article  CAS  Google Scholar 

  5. Capelli E., Beneš O., Beilmann M., Konings R. J. M., J. Chem. Thermodyn., 2013, 58, 110

    Article  CAS  Google Scholar 

  6. Delpech S., Merle-Lucotte E., Heuer D., Allibert M., Ghetta V., Le-Brun C., Doligez X., Picard G., J. Fluor. Chem., 2009, 130, 11

    Article  CAS  Google Scholar 

  7. Forsberg C. W., Peterson P. F., Pickard P. S., Nucl. Technol. 2003, 144, 289

    Article  CAS  Google Scholar 

  8. Yin H. Q., Wang K., Liu W. G., Xie L. D., Han H., Wang W. F., Chem. Res. Chinese Universities 2015, 31(3), 461

    Article  CAS  Google Scholar 

  9. Yin H. Q., Wang K., Liu W. G., Xie L. D., Han H., Wang W. F., Chem. J. Chinese Universities, 2014, 35(12), 2668

    CAS  Google Scholar 

  10. An X. H., Zhang P., Cheng J. H., Cheng S. L., Wang J. Q., Chem. Res. Chinese Universities 2017, 33(1), 122

    Article  CAS  Google Scholar 

  11. Capelli E., Beneš O., Konings R. J. M., J. Nucl. Mater., 2014, 449(1―3), 111

    Article  CAS  Google Scholar 

  12. Wang K., Zuo Y., Zhang P., Xie L. D., Technological Report from TMSR Center, Shanghai Institute of Applied Physics, Shanghai, 2015

    Google Scholar 

  13. Chartrand P., Pelton A. D., Metall. Mater. Trans. 2001, 32A, 1417

    Article  CAS  Google Scholar 

  14. Salanne M., Simon C., Turq P., Madden P. A., J. Phys. Chem. B, 2007, 111, 4678

    Article  CAS  PubMed  Google Scholar 

  15. Margules M., Sitzungsber. Akad. Wiss. Wien. 1895, 104, 1243

    Google Scholar 

  16. Borelius G., Annalen. der. Physik. 1934, 20, 57

    Article  CAS  Google Scholar 

  17. Redlich O., Kister A. T., Ind. Eng. Chem. Res. 1948, 40, 345

    Article  Google Scholar 

  18. Bale C. W., Pelton A. D., Metall. Trans. 1974, 5, 2323

    Article  CAS  Google Scholar 

  19. Toth L. M., Bates J. B., Boyd G. E., J. Phys. Chem., 1973, 77(2), 216

    Article  CAS  Google Scholar 

  20. Roy D. M., Roy R., Osborn E. F., J. Am. Ceram. Soc., 1950, 33(3), 85

    Article  CAS  Google Scholar 

  21. Roy D. M., Roy R., Osborn E. F., J. Am. Ceram. Soc., 1953, 36(6), 185

    Article  CAS  Google Scholar 

  22. Dobrokhotova Z. V., Zakharova B. S., Inst. Obshch. Neorg. Khim. Neorg. Mater. 1994, 30(4), 510

    CAS  Google Scholar 

  23. Cantor S., J. Phys. Chem., 1961, 65, 2208

    Article  CAS  Google Scholar 

  24. Levina M. E., Izvest. V. U. Z., Khim. Khim. Tekhnol. 1967, 10(2), 128

    CAS  Google Scholar 

  25. Novoselova A. V., Levina M. E., Savel’eva M. P., Zh. Neorg. Khim. 1958, 3, 2562

    CAS  Google Scholar 

  26. Novoselova A. V., Levina M. E., Simanov Y. P., Zhasmin A. G., Zh. Obshch. Khim. 1944, 14, 385

    CAS  Google Scholar 

  27. Thoma R. E., Adv. Molten Salt Chem. 1975, 3, 275

    Article  CAS  Google Scholar 

  28. Thilo E., Schröder H., Z. Phys. Chem., 1951, 197, 39

    Article  CAS  Google Scholar 

  29. Barton C. J., Friedman H. A., Grimes W. R., Insley H., Moore R. E., Thoma R. E., J. Am. Ceram. Soc., 1958, 41, 66

    Article  Google Scholar 

  30. Zachariasen W. H., J. Am. Chem. Soc., 1948, 70, 2147

    Article  CAS  Google Scholar 

  31. Thoma R. E., Insley H., Landau B. S., Friedman H. A., Grime W. R., J. Phys. Chem., 1959, 63, 1266

    Article  CAS  Google Scholar 

  32. Sidorov L. N., Zhuravleva L. V., Varkov M. V., Skokan E.V., Sorokin I. D., Korenev Y. M., Akishin P. A., Int. J. Mass Spectrom. Ion Processes, 1983, 51(2/3), 291

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuehui An or Leidong Xie.

Additional information

Supported by the National Natural Science Foundation of China(No.21406256) and the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XD02002400).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, S., Li, X., Zhang, P. et al. Thermodynamic Evaluation of NaF-MF n (M=Be, U, Th) Systems for Molten Salt Reactor. Chem. Res. Chin. Univ. 34, 457–463 (2018). https://doi.org/10.1007/s40242-018-7398-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-018-7398-5

Keywords

Navigation