Chemical Research in Chinese Universities

, Volume 34, Issue 2, pp 158–163 | Cite as

Synthesis of Biphasic Defective TiO2–x/Reduced Graphene Oxide Nanocomposites with Highly Enhanced Photocatalytic Activity

  • Guiqi Gao
  • Qing Zhu
  • Hanbao Chong
  • Jun Zheng
  • Congmin Fan
  • Guang Li


Biphasic defective TiO2–x/reduced graphene oxide(RGO) nanocomposites were synthesized by simple hydrothermal reactions. Compared with TiO2–x and commercial P25, TiO2–x/RGO shows much better photocatalytic activity and excellent stability in pollutants degradation, which could be ascribed to Ti3+ centers complexed with RGO and the synergetic effect between the two phases. The study reveals a new route for the synthesis of mixed-phase defective TiO2–x/carbon material nanocomposites for photocatalytic applications.


Defective biphasic TiO2–x Graphene sheet Photocatalysis Reduced graphene oxide 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Chen X. B., Shen S. H., Guo L. J., Mao S. S., Chem. Rev., 2010, 110, 6503CrossRefGoogle Scholar
  2. [2]
    Brown G. E. Jr., Henrich V. E., Casey W. H., Clark D. L., Eggleston C., Felmy A., Goodman D. W., Gratzel M., Maciel G., McCarthy M. I., Nealson K. H., Sverjensky D. A., Toney M. F., Zachara J. M., Chem. Rev., 1999, 99, 77CrossRefGoogle Scholar
  3. [3]
    Liu L., Chen X. B., Chem. Rev., 2014, 114, 9890CrossRefGoogle Scholar
  4. [4]
    Ma Y., Wang X. L., Jia Y. S., Chen X. B., Han H. X., Li C., Chem. Rev., 2014, 114, 9987CrossRefGoogle Scholar
  5. [5]
    Fujishima A., Honda K., Nature, 1972, 238, 37CrossRefGoogle Scholar
  6. [6]
    Asahi R., Morikawa T., Ohwaki T., Aoki K., Taga Y., Science, 2001, 293, 269CrossRefGoogle Scholar
  7. [7]
    Thompson T. L., Yates J. T., Chem. Rev., 2006, 106, 4428CrossRefGoogle Scholar
  8. [8]
    Yang H. G., Sun C. H., Qiao S. Z., Zou J., Liu G., Smith S. C., Cheng H. M., Lu G. Q., Nature, 2008, 453, 638CrossRefGoogle Scholar
  9. [9]
    Chen X. B., Liu L., Liu Z., Marcus M. A., Wang W. C., Oyler N. A., Grass M. E., Mao B. H., Glans P. A., Yu P. Y., Guo J. H., Mao S. S., Sci. Rep., 2013, 3, 1510CrossRefGoogle Scholar
  10. [10]
    Liu X., Gao S. M., Xu H., Lou Z. Z., Wang W. J., Huang B. B., Dai Y., Nanoscale, 2013, 5, 1870CrossRefGoogle Scholar
  11. [11]
    Zheng Z. K., Huang B. B., Meng X. D., Wang J. P., Wang S. Y., Lou Z. Z., Wang Z. Y., Qin X. Y., Zhang X. Y., Dai Y., Chem. Commun., 2013, 49, 868CrossRefGoogle Scholar
  12. [12]
    Nowotny M. K., Sheppard L. R., Bak T., Nowotny J., J. Phys. Chem. C, 2008, 112, 5275CrossRefGoogle Scholar
  13. [13]
    Wang Z., Yang C. Y., Lin T. Q., Yin H., Chen P., Wan D. Y., Xu F. F., Huang F. Q., Lin J. H., Xie X. M., Jiang M. H., Energy Environ. Sci., 2013, 6, 3007CrossRefGoogle Scholar
  14. [14]
    Grabstanowicz L. R., Gao S., Li T., Rickard R. M., Rajh T., Liu D. J., Xu T., Inorg. Chem., 2013, 52, 3884CrossRefGoogle Scholar
  15. [15]
    Chen X. B., Liu L., Yu P. Y., Mao S. S., Science, 2011, 331, 746CrossRefGoogle Scholar
  16. [16]
    Zuo F., Wang L., Wu T., Zhang Z. Y., Borchardt D., Feng P. Y., J. Am. Chem. Soc., 2010, 132, 11856CrossRefGoogle Scholar
  17. [17]
    Wang J. Q., Su S. Y., Liu B., Cao M. H., Hu C. W., Chem. Commun., 2013, 49, 7830CrossRefGoogle Scholar
  18. [18]
    Fan C. M., Peng Y., Zhu Q., Lin L., Wang R. X., Xu A. W., J. Phys. Chem. C, 2013, 117, 24157CrossRefGoogle Scholar
  19. [19]
    Wang J., Shen L. F., Nie P., Xu G. Y., Ding B., Fang S., Dou H., Zhang X. G., J. Mater. Chem. A, 2014, 2, 9150CrossRefGoogle Scholar
  20. [20]
    Zhang H., Lv X. J., Li Y. M., Wang Y., Li J. H., ACS Nano, 2010, 4, 380CrossRefGoogle Scholar
  21. [21]
    Liang Y. Y., Wang H. L., Casalongue H. S., Chen Z., Dai H. J., Nano Res., 2010, 3, 701CrossRefGoogle Scholar
  22. [22]
    Perera S. D., Mariano R. G., Vu K., Nour N., Seitz O., Chabal Y., Balkus K. J. Jr., ACS Catal., 2012, 2, 949CrossRefGoogle Scholar
  23. [23]
    Geim A. K., Novoselov K. S., Nature Materials, 2007, 6, 183CrossRefGoogle Scholar
  24. [24]
    Cong S., Xu Y. M., J. Phys. Chem. C, 2011, 115, 21161CrossRefGoogle Scholar
  25. [25]
    Shah M. S. A. S., Park A. R., Zhang K., Park J. H., Yoo P. J., ACS Appl. Mater. Interfaces, 2012, 4, 3893CrossRefGoogle Scholar
  26. [26]
    Carneiro J. T., Savenije T. J., Moulijn J. A., Mul G., J. Phys. Chem. C, 2011, 115, 2211CrossRefGoogle Scholar
  27. [27]
    Wang F. L., Ho J. H., Jiang Y. J., Amal R., ACS Appl. Mater. Inter-faces, 2015, 7, 23941CrossRefGoogle Scholar
  28. [28]
    Hummers W. S., Offeman R. E., J. Am. Chem. Soc., 1958, 80, 1339CrossRefGoogle Scholar
  29. [29]
    Xu Y. X., Bai H., Lu G. W., Li C., Shi G. Q., J. Am. Chem. Soc., 2008, 130, 5856CrossRefGoogle Scholar
  30. [30]
    Spurr R. A., Myers H., Anal. Chem., 1957, 29, 760CrossRefGoogle Scholar
  31. [31]
    Song X. M., Wu J. M., Tang M. Z., Qi B., Yan M., J. Phys. Chem. C, 2008, 112, 19484CrossRefGoogle Scholar
  32. [32]
    Rezaee M., Mousavi Khoie S. M., Liu K. H., Cryst. Eng. Comm., 2011, 13, 5055CrossRefGoogle Scholar
  33. [33]
    Yan J. Q., Wu G. J., Guan N. J., Li L. D., Li Z. X., Cao X. Z., Phys. Chem. Chem. Phys., 2013, 15, 10978CrossRefGoogle Scholar
  34. [34]
    Zhang X. Y., Li H. P., Cui X. L., Li Y. H., J. Mater. Chem., 2010, 20, 2801CrossRefGoogle Scholar
  35. [35]
    Parker J. C., Siegel R. W., J. Mater. Res., 1990, 5, 1246CrossRefGoogle Scholar
  36. [36]
    Cronemeyer D. C., Phys. Rev., 1959, 113, 1222CrossRefGoogle Scholar
  37. [37]
    Zheng Z. K., Huang B. B., Qin X. Y., Zhang X. Y., Dai Y., Whangbo M. H., J. Mater. Chem., 2011, 21, 9079CrossRefGoogle Scholar
  38. [38]
    Li J. G., Buchel R., Isobe M., Mori T., Ishigakii T., J. Phys. Chem. C, 2009, 113, 8009CrossRefGoogle Scholar
  39. [39]
    Bityurin N., Znaidi L., Kanaev A., Chem. Phys. Lett., 2003, 374, 95CrossRefGoogle Scholar
  40. [40]
    Suriye K., Praserthdam P., Jongsomjit B., Appl. Surf. Sci., 2007, 253, 3849CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Center of Modern Experimental TechnologyAnhui UniversityHefeiP. R. China
  2. 2.School of Physics and Material ScienceAnhui UniversityHefeiP. R. China
  3. 3.College of Materials and Chemistry & Chemical EngineeringChengdu University of TechnologyChengduP. R. China

Personalised recommendations