Synthesis of Biphasic Defective TiO2–x/Reduced Graphene Oxide Nanocomposites with Highly Enhanced Photocatalytic Activity
Article
First Online:
Received:
Accepted:
- 6 Downloads
Abstract
Biphasic defective TiO2–x/reduced graphene oxide(RGO) nanocomposites were synthesized by simple hydrothermal reactions. Compared with TiO2–x and commercial P25, TiO2–x/RGO shows much better photocatalytic activity and excellent stability in pollutants degradation, which could be ascribed to Ti3+ centers complexed with RGO and the synergetic effect between the two phases. The study reveals a new route for the synthesis of mixed-phase defective TiO2–x/carbon material nanocomposites for photocatalytic applications.
Keywords
Defective biphasic TiO2–x Graphene sheet Photocatalysis Reduced graphene oxidePreview
Unable to display preview. Download preview PDF.
References
- [1]Chen X. B., Shen S. H., Guo L. J., Mao S. S., Chem. Rev., 2010, 110, 6503CrossRefGoogle Scholar
- [2]Brown G. E. Jr., Henrich V. E., Casey W. H., Clark D. L., Eggleston C., Felmy A., Goodman D. W., Gratzel M., Maciel G., McCarthy M. I., Nealson K. H., Sverjensky D. A., Toney M. F., Zachara J. M., Chem. Rev., 1999, 99, 77CrossRefGoogle Scholar
- [3]Liu L., Chen X. B., Chem. Rev., 2014, 114, 9890CrossRefGoogle Scholar
- [4]Ma Y., Wang X. L., Jia Y. S., Chen X. B., Han H. X., Li C., Chem. Rev., 2014, 114, 9987CrossRefGoogle Scholar
- [5]Fujishima A., Honda K., Nature, 1972, 238, 37CrossRefGoogle Scholar
- [6]Asahi R., Morikawa T., Ohwaki T., Aoki K., Taga Y., Science, 2001, 293, 269CrossRefGoogle Scholar
- [7]Thompson T. L., Yates J. T., Chem. Rev., 2006, 106, 4428CrossRefGoogle Scholar
- [8]Yang H. G., Sun C. H., Qiao S. Z., Zou J., Liu G., Smith S. C., Cheng H. M., Lu G. Q., Nature, 2008, 453, 638CrossRefGoogle Scholar
- [9]Chen X. B., Liu L., Liu Z., Marcus M. A., Wang W. C., Oyler N. A., Grass M. E., Mao B. H., Glans P. A., Yu P. Y., Guo J. H., Mao S. S., Sci. Rep., 2013, 3, 1510CrossRefGoogle Scholar
- [10]Liu X., Gao S. M., Xu H., Lou Z. Z., Wang W. J., Huang B. B., Dai Y., Nanoscale, 2013, 5, 1870CrossRefGoogle Scholar
- [11]Zheng Z. K., Huang B. B., Meng X. D., Wang J. P., Wang S. Y., Lou Z. Z., Wang Z. Y., Qin X. Y., Zhang X. Y., Dai Y., Chem. Commun., 2013, 49, 868CrossRefGoogle Scholar
- [12]Nowotny M. K., Sheppard L. R., Bak T., Nowotny J., J. Phys. Chem. C, 2008, 112, 5275CrossRefGoogle Scholar
- [13]Wang Z., Yang C. Y., Lin T. Q., Yin H., Chen P., Wan D. Y., Xu F. F., Huang F. Q., Lin J. H., Xie X. M., Jiang M. H., Energy Environ. Sci., 2013, 6, 3007CrossRefGoogle Scholar
- [14]Grabstanowicz L. R., Gao S., Li T., Rickard R. M., Rajh T., Liu D. J., Xu T., Inorg. Chem., 2013, 52, 3884CrossRefGoogle Scholar
- [15]Chen X. B., Liu L., Yu P. Y., Mao S. S., Science, 2011, 331, 746CrossRefGoogle Scholar
- [16]Zuo F., Wang L., Wu T., Zhang Z. Y., Borchardt D., Feng P. Y., J. Am. Chem. Soc., 2010, 132, 11856CrossRefGoogle Scholar
- [17]Wang J. Q., Su S. Y., Liu B., Cao M. H., Hu C. W., Chem. Commun., 2013, 49, 7830CrossRefGoogle Scholar
- [18]Fan C. M., Peng Y., Zhu Q., Lin L., Wang R. X., Xu A. W., J. Phys. Chem. C, 2013, 117, 24157CrossRefGoogle Scholar
- [19]Wang J., Shen L. F., Nie P., Xu G. Y., Ding B., Fang S., Dou H., Zhang X. G., J. Mater. Chem. A, 2014, 2, 9150CrossRefGoogle Scholar
- [20]Zhang H., Lv X. J., Li Y. M., Wang Y., Li J. H., ACS Nano, 2010, 4, 380CrossRefGoogle Scholar
- [21]Liang Y. Y., Wang H. L., Casalongue H. S., Chen Z., Dai H. J., Nano Res., 2010, 3, 701CrossRefGoogle Scholar
- [22]Perera S. D., Mariano R. G., Vu K., Nour N., Seitz O., Chabal Y., Balkus K. J. Jr., ACS Catal., 2012, 2, 949CrossRefGoogle Scholar
- [23]Geim A. K., Novoselov K. S., Nature Materials, 2007, 6, 183CrossRefGoogle Scholar
- [24]Cong S., Xu Y. M., J. Phys. Chem. C, 2011, 115, 21161CrossRefGoogle Scholar
- [25]Shah M. S. A. S., Park A. R., Zhang K., Park J. H., Yoo P. J., ACS Appl. Mater. Interfaces, 2012, 4, 3893CrossRefGoogle Scholar
- [26]Carneiro J. T., Savenije T. J., Moulijn J. A., Mul G., J. Phys. Chem. C, 2011, 115, 2211CrossRefGoogle Scholar
- [27]Wang F. L., Ho J. H., Jiang Y. J., Amal R., ACS Appl. Mater. Inter-faces, 2015, 7, 23941CrossRefGoogle Scholar
- [28]Hummers W. S., Offeman R. E., J. Am. Chem. Soc., 1958, 80, 1339CrossRefGoogle Scholar
- [29]Xu Y. X., Bai H., Lu G. W., Li C., Shi G. Q., J. Am. Chem. Soc., 2008, 130, 5856CrossRefGoogle Scholar
- [30]Spurr R. A., Myers H., Anal. Chem., 1957, 29, 760CrossRefGoogle Scholar
- [31]Song X. M., Wu J. M., Tang M. Z., Qi B., Yan M., J. Phys. Chem. C, 2008, 112, 19484CrossRefGoogle Scholar
- [32]Rezaee M., Mousavi Khoie S. M., Liu K. H., Cryst. Eng. Comm., 2011, 13, 5055CrossRefGoogle Scholar
- [33]Yan J. Q., Wu G. J., Guan N. J., Li L. D., Li Z. X., Cao X. Z., Phys. Chem. Chem. Phys., 2013, 15, 10978CrossRefGoogle Scholar
- [34]Zhang X. Y., Li H. P., Cui X. L., Li Y. H., J. Mater. Chem., 2010, 20, 2801CrossRefGoogle Scholar
- [35]Parker J. C., Siegel R. W., J. Mater. Res., 1990, 5, 1246CrossRefGoogle Scholar
- [36]Cronemeyer D. C., Phys. Rev., 1959, 113, 1222CrossRefGoogle Scholar
- [37]Zheng Z. K., Huang B. B., Qin X. Y., Zhang X. Y., Dai Y., Whangbo M. H., J. Mater. Chem., 2011, 21, 9079CrossRefGoogle Scholar
- [38]Li J. G., Buchel R., Isobe M., Mori T., Ishigakii T., J. Phys. Chem. C, 2009, 113, 8009CrossRefGoogle Scholar
- [39]Bityurin N., Znaidi L., Kanaev A., Chem. Phys. Lett., 2003, 374, 95CrossRefGoogle Scholar
- [40]Suriye K., Praserthdam P., Jongsomjit B., Appl. Surf. Sci., 2007, 253, 3849CrossRefGoogle Scholar
Copyright information
© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2018