Chemical Research in Chinese Universities

, Volume 34, Issue 2, pp 180–185 | Cite as

Role of Adamantane Amide Based on L-Proline Double-H Potential Organocatalyst in Aldol Reaction with Product Separated via Host-guest Interaction

  • Rui Wang
  • Zhonglin Wei
  • Jing Guo
  • Yusha Feng
  • Enjie Xu
  • Haifeng Duan
  • Yingjie Lin
  • Qingbiao Yang
  • Jianshi Du
  • Yaoxian Li
Article

Abstract

Chiral organocatalysts of 4-adamantane amide based on L-proline with double hydrogen potential were synthesized and used in asymmetric aldol reactions. The reactions were evaluated in toluene under‒20 °C. A series of aldol products was obtained from moderate to good yields(up to 98%) with excellent diastereoselectivities(up to >99:1) and enantioselectivities(up to >99%). The aldol products in the system were separated by α-cyclodextrin via host-guest interaction and determined by chiral HPLC. The catalyst could be reused up to five times. The 4-substitution position played an important role in diastereoselectivity and enantioselectivity.

Keywords

Prolinamide Double hydrogen Aldol reaction Recycle Cyclodextrin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

40242_2018_7364_MOESM1_ESM.pdf (4.3 mb)
Role of adamantane amide at C4 based on L-proline double-H potential organocatalyst in aldol reaction with product being separated via host-gust interation

References

  1. [1]
    Sukumaran J., Hanefeld U., Chem. Soc. Rev., 2005, 34(6), 530CrossRefGoogle Scholar
  2. [2]
    García-Urdiales E., Alfonso I., Gotor V., Chem. Rev., 2005, 105(1), 313CrossRefGoogle Scholar
  3. [3]
    Sasaoka A., Uddin M. I., Shimomoto A., Ichikawa Y., Shiro M., Kotsukia H., Tetrahedron: Asymmetry, 2006, 17(21), 2963CrossRefGoogle Scholar
  4. [4]
    Desimoni G., Faita G., Jørgensen K. A., Chem. Rev., 2006, 106(9), 3561CrossRefGoogle Scholar
  5. [5]
    Mlynarski J., Paradowska J., Chem. Soc. Rev., 2008, 37(8), 1502CrossRefGoogle Scholar
  6. [6]
    Naodovic M., Yamamoto H., Chem. Rev., 2008, 108(8), 3132CrossRefGoogle Scholar
  7. [7]
    Bartók M., Chem. Rev., 2010, 110(3), 1663CrossRefGoogle Scholar
  8. [8]
    Trost B. M., Brindle C. S., Chem. Soc. Rev., 2010, 39(5), 1600CrossRefGoogle Scholar
  9. [9]
    Selander N. J., Szabó K., Chem. Rev., 2011, 111(3), 2048CrossRefGoogle Scholar
  10. [10]
    Brovetto M., Gamenara D., Saenz M. P., Seoane G. A., Chem. Rev., 2011, 111(7), 4346CrossRefGoogle Scholar
  11. [11]
    Mlynarski J., Baś S., Chem. Soc. Rev., 2014, 43(2), 577CrossRefGoogle Scholar
  12. [12]
    Wang Y. C., Lin J., Wei K., Tetrahedron: Asymmetry, 2014, 25(24), 1599CrossRefGoogle Scholar
  13. [13]
    List B., Lerner R. A., Barbas C. F., J. Am. Chem. Soc., 2000, 122(10), 2395CrossRefGoogle Scholar
  14. [14]
    Huang X. R., Liu Q., Wang J., Xiao J. A., Yang H., Tetrahedron: Asymmetry, 2014, 25(24), 1590CrossRefGoogle Scholar
  15. [15]
    Tang Z., Jiang F., Yu L., Cui X., Gong L., Mi A., Jiang Y., Wu Y., J. Am. Chem. Soc., 2003, 125(18), 5262CrossRefGoogle Scholar
  16. [16]
    Tang Z., Jiang F., Cui X., Gong L. Z., Mi A. Q., Jiang Y. Z., Wu Y. D., Proc. Natl. Acad. Sci. U.S.A., 2004, 101, 5755CrossRefGoogle Scholar
  17. [17]
    Tang Z., Yang Z. H., Chen X. H., Cun L. F., Mi A. Q., Jiang Y. Z., Gong L. Z., J. Am Chem. Soc., 2005, 127(25), 9285CrossRefGoogle Scholar
  18. [18]
    Guizzetti S., Benaglia M., Pignataro L., Puglisi A., Tetrahedron: Asymmetry, 2006, 17(19), 2754CrossRefGoogle Scholar
  19. [19]
    Tzeng Z., Chen H., Huang C., Chen K., Tetrahedron Lett., 2008, 49(26), 4134CrossRefGoogle Scholar
  20. [20]
    Sato K., Kuriyama M., Shimazawa R., Morimoto T., Kakiuchi K., Shirai R., Tetrahedron Lett., 2008, 49(15), 2402CrossRefGoogle Scholar
  21. [21]
    Chimi S. S., Singh S., Mahajan D., Tetrahedron: Asymmetry, 2008, 19(19), 2276CrossRefGoogle Scholar
  22. [22]
    Zhang S. P., Fu X. K., Fu S. D., Pan J. F., Catal. Commun., 2009, 10(4), 401CrossRefGoogle Scholar
  23. [23]
    Mitsui K., Hyatt S. A., Turner D. A., Hadad C. M., Parquette J. R., Chem. Commun., 2009, (22), 3261CrossRefGoogle Scholar
  24. [24]
    Moorthy J. N., Saha S., Eur. J. Org. Chem., 2009, (5), 739Google Scholar
  25. [25]
    Saha S., Moorthy J. N., Tetrahedron Lett., 2010, 51(6), 912CrossRefGoogle Scholar
  26. [26]
    Lu Z. J., Mei H. B., Han J. L., Pan Y., Chem. Biol. Drug Des., 2010, 76(2), 181CrossRefGoogle Scholar
  27. [27]
    Kinsella M., Duggan P. G., Lennon C. M., Tetrahedron: Asymmetry, 2011, 22(13), 1423CrossRefGoogle Scholar
  28. [28]
    Zhang F. R., Li C. M., Qi C. X., Tetrahedron: Asymmetry, 2013, 24(7), 380CrossRefGoogle Scholar
  29. [29]
    Eymur S., Akceylan E., Sahin O., Uyanik A., Yilmaz M., Tetrahedron, 2014, 70(30), 4471CrossRefGoogle Scholar
  30. [30]
    Akceylana E., Uyanika A., Eymurb S., Sahina O., Yilmaza M., Ak-ceylan E., Applied Catalysis A: General, 2015, 499, 205CrossRefGoogle Scholar
  31. [31]
    Yadav G. D., Singh S., Tetrahedron: Asymmetry, 2016, 27, 123CrossRefGoogle Scholar
  32. [32]
    Jin H., Cho S. M., Lee J., Ryu D. H., Org. Lett., 2017, 19(9), 2434CrossRefGoogle Scholar
  33. [33]
    Izquierdo J., Pericàs M. A., ACS Catal., 2016, 6(1), 348CrossRefGoogle Scholar
  34. [34]
    Benaglia M., Cinquini M., Cozzi F., Puglisi A., Celentano G., Adv. Synth. Catal., 2002, 344(5), 533CrossRefGoogle Scholar
  35. [35]
    Benaglia M., Puglisi A., Cozzi F., Chem. Rev., 2003, 103(9), 3401CrossRefGoogle Scholar
  36. [36]
    Cozzi F., Adv. Synth. Catal., 2006, 348(12/13), 1367CrossRefGoogle Scholar
  37. [37]
    Gruttadauria M., Giacalone F., Marculescu A. M., Lo Meo P., Riela S., Noto R., Eur. J. Org. Chem., 2007, (28), 468Google Scholar
  38. [38]
    Lu A., Moatsuo D., Longbottom D. A., O’Reilly R. K., Chem. Sci., 2013, 4(3), 965CrossRefGoogle Scholar
  39. [39]
    Xiao J., Li G. W., Zhang W., Chem. Res. Chinese Universities, 2013, 29(2), 256CrossRefGoogle Scholar
  40. [40]
    Hu F. Y., Du G. H., Ye L., Zhu Y. T., Wang Y., Jiang L. M., Polymer, 2016, 102, 33CrossRefGoogle Scholar
  41. [41]
    Font D., Bastero A., Sayalero S., Jimeno C., Pericas M. A., Org. Lett., 2007, 9(10), 1943CrossRefGoogle Scholar
  42. [42]
    Alza E., Rodriguez-Escrich C., Sayalero S., Bastero A., Pericas M. A., Chem. Eur. J., 2009, 15(39), 10167CrossRefGoogle Scholar
  43. [43]
    Riente P., Mendoza C., Pericas M. A., J. Mater. Chem., 2011, 21(20), 7350CrossRefGoogle Scholar
  44. [44]
    Fan X., Alza E., Pericas M. A., RSC Adv., 2012, 2(14), 6164CrossRefGoogle Scholar
  45. [45]
    Riente P., Yadav J., Pericas M. A., Org. Lett., 2012, 14(14), 3668CrossRefGoogle Scholar
  46. [46]
    Caminade A. M., Ouali A., Keller M., Majoral J. P., Chem. Soc. Rev., 2012, 41(11), 4113CrossRefGoogle Scholar
  47. [47]
    Rasmussen B., Christensen J. B., Org. Biomol. Chem., 2012, 10(25), 4821CrossRefGoogle Scholar
  48. [48]
    Vaquer L., Riente P., Sala X., Jansat S., Benet-Buchholz J., Llobet A., Pericas M. A., Catal. Sci. Technol., 2013, 3(3), 706CrossRefGoogle Scholar
  49. [49]
    Ribourdouille Y., Engel G. D., Gade L. H., Compets Rendus Chimie, 2003, 6(8―10), 1087CrossRefGoogle Scholar
  50. [50]
    Slagt M. Q., Stiriba S. E., Kautz H., Gebbink R. J., Frey H., Koten G. V., Organometallics, 2004, 23(7), 1525CrossRefGoogle Scholar
  51. [51]
    Itsuno S., Hassan M. M., RSC Adv., 2014, 4(94), 52023CrossRefGoogle Scholar
  52. [52]
    Lu A., Cotanda P., Patterson J. P., Longbottom D. A., O’Reilly R. K., Chem. Commun., 2012, 48(78), 9699CrossRefGoogle Scholar
  53. [53]
    Cooke G., Rotello V. M., Chem. Soc. Rev., 2002, 31(5), 275CrossRefGoogle Scholar
  54. [54]
    Zhang Y., Wang W., Li Q., Yang Q. B., Li Y. X., Du J. S., Talanta, 2015, 141, 33CrossRefGoogle Scholar
  55. [55]
    Cui B. Q., Yu J., Yu F. C., Li Y. M., Chang K. J., Shen Y. H., RSC Adv., 2015, 5(14), 10386CrossRefGoogle Scholar
  56. [56]
    Huang W. P., Chen J. R., Li X. Y., Cao Y. J., Xiao W. J., Can. J. Chem., 2007, 85(3), 208CrossRefGoogle Scholar
  57. [57]
    Zheng X., Qian Y. B., Wang Y. M., Eur. J. Org. Chem., 2010, 3, 515CrossRefGoogle Scholar
  58. [58]
    Yarlagadda S., Ramesh B., Reddy C. R., Srinivas L., Sridhar B., Reddy B. V., Org. Lett., 2017, 19(1), 170CrossRefGoogle Scholar
  59. [59]
    Uekama K. H., Irit T., Chem. Rev., 1998, 98, 2045CrossRefGoogle Scholar
  60. [60]
    Sun T., Zhang H. C., Yan H., Li J. Y., Cheng G. H., Hao A. Y., Supramol. Chem., 2011, 23(5), 351CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Rui Wang
    • 1
  • Zhonglin Wei
    • 1
  • Jing Guo
    • 1
  • Yusha Feng
    • 1
  • Enjie Xu
    • 1
  • Haifeng Duan
    • 1
  • Yingjie Lin
    • 1
  • Qingbiao Yang
    • 1
  • Jianshi Du
    • 2
  • Yaoxian Li
    • 1
  1. 1.College of ChemistryJilin UniversityChangchunP. R. China
  2. 2.China-Japan Union Hospital of Jilin UniversityChangchunP. R. China

Personalised recommendations