Skip to main content
Log in

Adsorption Activity and Molecular Dynamics Study on Anti-corrosion Mechanism of Q235 Steel

  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

The correlation between inhibition efficiency and molecular structures of the inhibitor during hydrochloric acid corrosion of Q235 steel was studied by quantum chemical calculations and molecular dynamics(MD) simulation. The proton affinity(PA) calculations demonstrated that 2-(quinolin-2-yl)quinazolin-4(3H)-one inhibitor has the tendency to be protonated in hydrochloric acid, which was in good agreement with experimental observations. Besides, quantum chemical parameters revealed that the protonated corrosion inhibitor molecules were more easily adsorbed on Q235 steel surface and improved the corrosion resistance of steel. MD simulations were implemented to search for the adsorption behavior of this molecule on Fe (110) surface, which might be used as a convenient tool for estimating the interaction mechanism between inhibitor and iron surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang S., Tao Z., Li W., Hou B., Appl. Surf. Sci., 2009, 255, 6757

    Article  CAS  Google Scholar 

  2. Ayati N. S., Khandandel S., Momeni M., Moayed M. H., Davoodi A., Rahimizadeh M., Mater. Chem. Phys., 2001, 126, 873

    Article  CAS  Google Scholar 

  3. Askalany A. H., Mostafa S. I., Shalabi K., Eid A. M., Shaaban S., J. Mol. Liq., 2016, 223, 497

    Article  CAS  Google Scholar 

  4. Zhang W. W., Ma R., Li S., Liu Y., Niu L., Chem. Res. Chinese Universities, 2016, 32(5), 827

    Article  CAS  Google Scholar 

  5. Mistry B. M., Patel N. S., Sahoo S., Jauhari S., Bull. Mater. Sci., 2012, 35, 459

    Article  CAS  Google Scholar 

  6. Olasunkanmi L. O., Obot I. B., Kabanda M. M., J. Phys. Chem. C, 2015, 119, 16004

    Article  CAS  Google Scholar 

  7. Saha S. K., Ghosh P., Hens A., Murmu N. C., Physica E., 2015, 66, 332

    Article  CAS  Google Scholar 

  8. Kokalj A., Electrochim. Acta, 2010, 56, 745

    Article  CAS  Google Scholar 

  9. Zhang J., Zhao W. M., Guo W. Y., Wang Y., Li Z. P., Acta Phys. Chim. Sin., 2008, 24, 1239

    CAS  Google Scholar 

  10. Zhang W. W., Ma R., Liu H. H., Liu Y., Li S., Niu L., J. Mol. Liq., 2016, 222, 671

    Article  CAS  Google Scholar 

  11. Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Pe-tersson G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J. A., Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Ku-din K. N., Staroverov V. N., Keith T., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam J. M., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salva-dor P., Dannenberg J. J., Dapprich S., Daniels A. D., Farkas O., Foresman J. B., Ortiz J. V., Cioslowski J., Fox D. J., Gaussian 09, Gaussian Inc., Wallingford CT, 2013

    Google Scholar 

  12. Xiao L., Chu W., Sun W. J., Xue Y., Chem. Res. Chinese Universi-ties, 2017, 33(3), 422

    Article  CAS  Google Scholar 

  13. Liu N. N., Yu S., Ding Y. H., Chem. J. Chinese Universities, 2016, 37(11), 2006

    CAS  Google Scholar 

  14. Zeng J. P., Zhang J. Y., Gong G. X., Comput. Theor. Chem., 2011, 963, 110

    Article  CAS  Google Scholar 

  15. RameshKumar S., Danaee I., Rashvand Avei M., Vijayan M., J. Mol. Liq., 2015, 212, 168

    Article  CAS  Google Scholar 

  16. Danaee I., Gholami M., Rashvand Avei M., Maddahy M. H., J. Ind. Eng. Chem., 2015, 26, 81

    Article  CAS  Google Scholar 

  17. Makowski M., Raczyńska E. D., Chmurzyński L., J. Phys. Chem. A, 2001, 105, 869

    Article  CAS  Google Scholar 

  18. Raczyńska E. D., Darowska M., Dabkowska I., Decouzon M., Gal J. F., Maria P. C., Poliart C. D., J. Org. Chem., 2004, 69, 4023

    Article  CAS  PubMed  Google Scholar 

  19. Raczyńska E. D., Makowski M., Gornicka E., Darowska M., Int. J. Mol. Sci., 2005, 6, 143

    Article  Google Scholar 

  20. Brigas A. F., Clegg W., Dillon C. J., J. Chem. Soc., Perkin Trans., 2001, 2, 1315

    Article  CAS  Google Scholar 

  21. Gece G., Corros. Sci., 2008, 50, 2981

    Article  CAS  Google Scholar 

  22. Wang J. K., Han L., Huang L., Zhang H. J., Li J. Y., Li S. S., Chem. J. Chinese Universities, 2017, 38(9), 1602

    CAS  Google Scholar 

  23. Cruz J., Garcia Ochoa E., Castrob M., J. Electrochem. Soc., 2003, 150, 26

    Article  CAS  Google Scholar 

  24. Aljourani J., Raeissi K., Golozar M. A., Corros. Sci., 2009, 51, 1836

    Article  CAS  Google Scholar 

  25. Yüce A. O., Mert B. D., Kardas G., Yazici B., Corros. Sci., 2014, 83, 310

    Article  CAS  Google Scholar 

  26. Mahdavian M., Ashhari S., Electrochim. Acta, 2010, 55, 1720

    Article  CAS  Google Scholar 

  27. Lukovits I., Kálmán E., Zucchi F., Corrosion, 2001, 57, 3

    Article  CAS  Google Scholar 

  28. Parr R. G., Yang W., J. Am. Chem. Soc., 1984, 106, 4049

    Article  CAS  Google Scholar 

  29. Fazal E., Yohannan Panicker C., Nagarajan S., Sudha B. S., Srivastava S. K., Harikumar B., Anto P. L., Spectrochim. Acta A, 2015, 145, 260

    Article  CAS  Google Scholar 

  30. Soltani N., Behpour M., Oguzie E. E., Mahluji M., Ghasemzadeh M. A., RSC Adv., 2015, 5, 11145

    Article  CAS  Google Scholar 

  31. Casewit C., Colwell K., Rappe A., J. Am. Chem. Soc., 1992, 114, 10046

    Article  CAS  Google Scholar 

  32. Arab S. T., Mater. Res. Bull., 2008, 43, 510

    Article  CAS  Google Scholar 

  33. Popova A., Christov M., Deligeorigiev T., Corrosion, 2003, 59, 756

    Article  CAS  Google Scholar 

  34. Saha Kr S., Hens A., Roy Chowdhury A., Lohar Kr A., Murmu N. C., Canad. Chem. Trans., 2014, 2, 489

    Google Scholar 

  35. Cao Z., Tang Y., Cang H., Xu J., Lu G., Jing W., Corros. Sci., 2014, 83, 292

    Article  CAS  Google Scholar 

  36. Allen M. P., Tildesley D. J., Computer Simulation of Liquids, Clarendon Press, Oxford, 1987

    Google Scholar 

  37. Shi W. Y., Ding C., Yan J. L., Desalination, 2012, 291, 8

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huijing Li or Lin Niu.

Additional information

Supported by the National Natural Science Foundation of China(Nos.21672046, 21372054, 21503056, 51171094) and the Fundamental Research Funds for the Central Universities, China(No.HIT.NSRIF.201701).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Li, H., Wu, Y. et al. Adsorption Activity and Molecular Dynamics Study on Anti-corrosion Mechanism of Q235 Steel. Chem. Res. Chin. Univ. 34, 817–822 (2018). https://doi.org/10.1007/s40242-018-7349-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-018-7349-1

Keywords

Navigation