Skip to main content
Log in

First-principles Study of Mechanical and Electronic Properties of Co-Sn Intermetallics for Lithium Ion Battery Anode

  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

The equilibrium structures, formation energy, mechanical properties and electronic properties of Co-Sn intermetallics have been systemically studied by first-principles study. The results show that the CoSn phase is more thermodynamically stable than any other stoichiometry of Co-Sn intermetallics. With the increasing of Co content in Co-Sn intermetallics, the mechanical properties change into brittle behavior from ductility character. Adding proper amount of Co to Co-Sn intermetallics can improve the cycle performance for lithium ion battery anode. However, high Co content will lead to a poor cycle performance for Co-Sn intermetallics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jiang A. N., Fan X., Zhu J., Ma D. Q., Xu X. H., Ionics, 2015, 21(8), 2137

    Article  CAS  Google Scholar 

  2. Meng H. W., Yang H. Y., Yu X. H., Dou P., Ma D. Q., Xu X. H., RSC Advances, 2015, 5(116), 95488

    Article  CAS  Google Scholar 

  3. Pang X. J., Tan C. H., Dai X. H., Wang X., Qi G. W., Zhang S. Y., J. Appl. Electrochem., 2015, 45(2), 115

    Article  CAS  Google Scholar 

  4. Li J. T., Swiatowska J., Seyeux A., Huang L., Maurice V., Sun S. G., Marcus P., J. Power Sources, 2010, 195(24), 8251

    Article  CAS  Google Scholar 

  5. Xiao S., Song H., Li A., Chen X. H., Zhou J. S., Ma Z. K., J. Mater. Chem. A, 2017, 5(12), 5873

    Article  Google Scholar 

  6. Yui Y., Ono Y., Hayashi M., Nemoto Y., Hayashi K., Asakura K., Kitabayashi H., J. Electrochem. Soc., 2015, 162(2), A3098

    Article  CAS  Google Scholar 

  7. Yui Y. H., Hayashi M., Hayashi K., Nakamura J., Solid State Ionics, 2016, 288, 219

    Article  CAS  Google Scholar 

  8. Zhang F., Wang J. C., Liu S. H., Du Y., J. Power Sources, 2016, 330, 111

    Article  CAS  Google Scholar 

  9. Sosa-Hernández E. M., Montejano-Carrizales J. M., Alvarado-Leyva P. G., J. Alloys Compounds, 2015, 632, 772

    Article  Google Scholar 

  10. Clark S. J., Segall M. D., Pickard C. J., Hasnip P. J., Probert M. I., Refson K., Payne M. C., Zeitschrift für Kristallographie-Crystalline Materials, 2005, 220(5/6), 567

    Article  CAS  Google Scholar 

  11. Vanderbilt D., Phys. Rev. B, 1990, 41(11), 7892

    Article  CAS  Google Scholar 

  12. Perdew J. P., Burke K., Ernzerhof M., Phys. Rev. Lett., 1996, 77(18), 3865

    Article  CAS  Google Scholar 

  13. Monkhorst H. J., Pack J. D., Phys. Rev. B, 1976, 13(12), 5188

    Article  Google Scholar 

  14. Colinet C., Tedenac J. C., Fries S. G., Calphad, 2009, 33(1), 250

    Article  CAS  Google Scholar 

  15. Chen J., Lai Y. S., Microelectronics Reliability, 2009, 49(3), 264

    Article  CAS  Google Scholar 

  16. Voigt W., Annalen der Physik, 1889, 274(12), 573

    Article  Google Scholar 

  17. Reuss A., Z. Angew. Math. Mech., 1929, 9, 49

    Article  CAS  Google Scholar 

  18. Hill R., Proc. Phys. Soc.: Section A, 1952, 65(5), 349

    Article  Google Scholar 

  19. Simmons G., Wang H. B., Single Crystal Elastic Constants & Cal-culated Aggregate Properties, 1971, 34

    Google Scholar 

  20. Ishida K., Nishizawa T., J. Phase Equilibria, 1991, 12(1), 88

    Article  CAS  Google Scholar 

  21. Wang X. L., Chen H., Bai J., Han W. Q., J. Phys. Chem. Lett., 2012, 3(11), 1488

    Article  CAS  Google Scholar 

  22. Liu M, Liu L. G., High Temperatures-High Pressures, 1986, 18, 79

    CAS  Google Scholar 

  23. Mortazavi M., Deng J. K., Shenoy V. B., Medhekar N. V., J. Power Sources, 2013, 225, 207

    Article  CAS  Google Scholar 

  24. Sun W. M., Zhang L., Liu J., Wang H., Bu Y. X., Computational Ma-terials Science, 2016, 111, 175

    Article  CAS  Google Scholar 

  25. Havinga E. E., J. Less Common Metals, 1972, 27(2), 187

    Article  CAS  Google Scholar 

  26. Larsson A. K., Haeberlein M., Lidin S., Schwarz U., J. Alloy. Comp., 1996, 240(1/2), 79

    Article  CAS  Google Scholar 

  27. Owen E. A., Madoc J. D., Proc. Phys. Soc. B, 1954, 67(6), 456

    Article  Google Scholar 

  28. Max B., Kun H., Dynamical Theory of Crystal Lattices, Clarendon, Oxford, 1956, 132

    Google Scholar 

  29. Wang X. L., Feygenson M., Chen H., Lin C. H., Ku W., Bai J., Han W. Q., J. Am. Chem. Soc., 2011, 133(29), 1121

    Google Scholar 

  30. Li L. H., Wang W. L., Wei B., Comput. Mater. Sci., 2015, 99, 274

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ding Shen or Shaobin Yang.

Additional information

Supported by the National Natural Science Foundation of China(Nos.51274119, 51774175) and the Open Projects of Research Center of Coal Resources Safe Mining and Clean Utilization, Liaoning Province, China(No. LNTU16KF15).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, W., Shen, D., Yang, S. et al. First-principles Study of Mechanical and Electronic Properties of Co-Sn Intermetallics for Lithium Ion Battery Anode. Chem. Res. Chin. Univ. 34, 235–240 (2018). https://doi.org/10.1007/s40242-018-7340-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-018-7340-x

Keywords

Navigation