Advertisement

Chemical Research in Chinese Universities

, Volume 34, Issue 2, pp 235–240 | Cite as

First-principles Study of Mechanical and Electronic Properties of Co-Sn Intermetallics for Lithium Ion Battery Anode

  • Wei Dong
  • Ding Shen
  • Shaobin Yang
  • Bing Liang
  • Xuelei Wang
  • Yue Liu
  • Sinan Li
Article
  • 42 Downloads

Abstract

The equilibrium structures, formation energy, mechanical properties and electronic properties of Co-Sn intermetallics have been systemically studied by first-principles study. The results show that the CoSn phase is more thermodynamically stable than any other stoichiometry of Co-Sn intermetallics. With the increasing of Co content in Co-Sn intermetallics, the mechanical properties change into brittle behavior from ductility character. Adding proper amount of Co to Co-Sn intermetallics can improve the cycle performance for lithium ion battery anode. However, high Co content will lead to a poor cycle performance for Co-Sn intermetallics.

Keywords

Co-Sn intermetallic Mechanical property Electronic property First-principle Lithium ion battery 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Jiang A. N., Fan X., Zhu J., Ma D. Q., Xu X. H., Ionics, 2015, 21(8), 2137CrossRefGoogle Scholar
  2. [2]
    Meng H. W., Yang H. Y., Yu X. H., Dou P., Ma D. Q., Xu X. H., RSC Advances, 2015, 5(116), 95488CrossRefGoogle Scholar
  3. [3]
    Pang X. J., Tan C. H., Dai X. H., Wang X., Qi G. W., Zhang S. Y., J. Appl. Electrochem., 2015, 45(2), 115CrossRefGoogle Scholar
  4. [4]
    Li J. T., Swiatowska J., Seyeux A., Huang L., Maurice V., Sun S. G., Marcus P., J. Power Sources, 2010, 195(24), 8251CrossRefGoogle Scholar
  5. [5]
    Xiao S., Song H., Li A., Chen X. H., Zhou J. S., Ma Z. K., J. Mater. Chem. A, 2017, 5(12), 5873CrossRefGoogle Scholar
  6. [6]
    Yui Y., Ono Y., Hayashi M., Nemoto Y., Hayashi K., Asakura K., Kitabayashi H., J. Electrochem. Soc., 2015, 162(2), A3098CrossRefGoogle Scholar
  7. [7]
    Yui Y. H., Hayashi M., Hayashi K., Nakamura J., Solid State Ionics, 2016, 288, 219CrossRefGoogle Scholar
  8. [8]
    Zhang F., Wang J. C., Liu S. H., Du Y., J. Power Sources, 2016, 330, 111CrossRefGoogle Scholar
  9. [9]
    Sosa-Hernández E. M., Montejano-Carrizales J. M., Alvarado-Leyva P. G., J. Alloys Compounds, 2015, 632, 772CrossRefGoogle Scholar
  10. [10]
    Clark S. J., Segall M. D., Pickard C. J., Hasnip P. J., Probert M. I., Refson K., Payne M. C., Zeitschrift für Kristallographie-Crystalline Materials, 2005, 220(5/6), 567CrossRefGoogle Scholar
  11. [11]
    Vanderbilt D., Phys. Rev. B, 1990, 41(11), 7892CrossRefGoogle Scholar
  12. [12]
    Perdew J. P., Burke K., Ernzerhof M., Phys. Rev. Lett., 1996, 77(18), 3865CrossRefGoogle Scholar
  13. [13]
    Monkhorst H. J., Pack J. D., Phys. Rev. B, 1976, 13(12), 5188CrossRefGoogle Scholar
  14. [14]
    Colinet C., Tedenac J. C., Fries S. G., Calphad, 2009, 33(1), 250CrossRefGoogle Scholar
  15. [15]
    Chen J., Lai Y. S., Microelectronics Reliability, 2009, 49(3), 264CrossRefGoogle Scholar
  16. [16]
    Voigt W., Annalen der Physik, 1889, 274(12), 573CrossRefGoogle Scholar
  17. [17]
    Reuss A., Z. Angew. Math. Mech., 1929, 9, 49CrossRefGoogle Scholar
  18. [18]
    Hill R., Proc. Phys. Soc.: Section A, 1952, 65(5), 349CrossRefGoogle Scholar
  19. [19]
    Simmons G., Wang H. B., Single Crystal Elastic Constants & Cal-culated Aggregate Properties, 1971, 34Google Scholar
  20. [20]
    Ishida K., Nishizawa T., J. Phase Equilibria, 1991, 12(1), 88CrossRefGoogle Scholar
  21. [21]
    Wang X. L., Chen H., Bai J., Han W. Q., J. Phys. Chem. Lett., 2012, 3(11), 1488CrossRefGoogle Scholar
  22. [22]
    Liu M, Liu L. G., High Temperatures-High Pressures, 1986, 18, 79Google Scholar
  23. [23]
    Mortazavi M., Deng J. K., Shenoy V. B., Medhekar N. V., J. Power Sources, 2013, 225, 207CrossRefGoogle Scholar
  24. [24]
    Sun W. M., Zhang L., Liu J., Wang H., Bu Y. X., Computational Ma-terials Science, 2016, 111, 175CrossRefGoogle Scholar
  25. [25]
    Havinga E. E., J. Less Common Metals, 1972, 27(2), 187CrossRefGoogle Scholar
  26. [26]
    Larsson A. K., Haeberlein M., Lidin S., Schwarz U., J. Alloy. Comp., 1996, 240(1/2), 79CrossRefGoogle Scholar
  27. [27]
    Owen E. A., Madoc J. D., Proc. Phys. Soc. B, 1954, 67(6), 456CrossRefGoogle Scholar
  28. [28]
    Max B., Kun H., Dynamical Theory of Crystal Lattices, Clarendon, Oxford, 1956, 132Google Scholar
  29. [29]
    Wang X. L., Feygenson M., Chen H., Lin C. H., Ku W., Bai J., Han W. Q., J. Am. Chem. Soc., 2011, 133(29), 1121Google Scholar
  30. [30]
    Li L. H., Wang W. L., Wei B., Comput. Mater. Sci., 2015, 99, 274CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Material Science and EngineeringLiaoning Technical UniversityFuxinP. R. China
  2. 2.Research Center of Coal Resources Safe Mining and Clean UtilizationLiaoning Technical UniversityFuxinP. R. China
  3. 3.College of Mechanics and EngineeringLiaoning Technical UniversityFuxinP. R. China
  4. 4.College of MiningLiaoning Technical UniversityFuxinP. R. China

Personalised recommendations