Experimental Investigation and Thermodynamic Modeling of the NaCl-NaNO3-Na2SO4 Ternary System

Article
  • 4 Downloads

Abstract

Molten salts as heat transfer and storage materials have been used to nuclear energy and concentrated solar power(CSP) applications. In this work, the system of molten salt mixture based on thermodynamic principles was designed as thermal energy storage(TES) materials. The substitutional solution model can be employed to describe the Gibbs energies of all liquid phase. Thermodynamic model parameters for the NaCl-NaNO3-Na2SO4 subsystems were conducted by thermodynamic evaluation and optimization based on experimental phase-equilibria data. Thus, a set of self-consistent thermodynamic database was eventually obtained to reliably calculate the whole phase diagram and thermodynamic properties for the NaCl-NaNO3-Na2SO4 ternary system. The results manifest that the eutectic point of theternary system located at T=280 °C and xNaCl=8.4%, \({x_{NaN{O_3}}}\) =86.3% and \({x_{N{a_2}S{O_4}}}\) =5.3%. Moreover, the results predicted were verified experimentally using differential scanning calorimetry(DSC) and the agreement between the measured value[T=(287±2) °C] and predicted value(T=280 °C) was satisfactory. Thus, the thermodynamic calculation method will be used to design and develop novel molten salt mixture as thermal energy storage materials.

Keywords

Thermodynamics modeling Molten salt Thermal energy storage Phase diagram 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Aneke M., Wang M. H., Appl. Energ. 2016, 179, 350CrossRefGoogle Scholar
  2. [2]
    Alva G., Liu L. K., Huang X., Fang G. Y., Renew. Sustain. Energy Rev. 2017, 68, 693CrossRefGoogle Scholar
  3. [3]
    Myers P. D., Goswami D. Y., Appl. Therm. Eng. 2016, 109, 889CrossRefGoogle Scholar
  4. [4]
    Raade J. W., Padowitz D., J. Sol. Energy Eng., 2011, 133(3), 031013CrossRefGoogle Scholar
  5. [5]
    Fernandez A. G., Ushak S., Galleguillos H., Perez F. J., Solar Energ. Mater. Solar Cells 2015, 132, 172CrossRefGoogle Scholar
  6. [6]
    Mantha D., Wang T., Reddy R. G., Solar Energ. Mater. Solar Cells 2013, 118, 18CrossRefGoogle Scholar
  7. [7]
    Wang T., Mantha D., Reddy R. G., Appl. Energ. 2013, 102, 1422CrossRefGoogle Scholar
  8. [8]
    Wang T., Mantha D., Reddy R. G., Solar Energ. Mater. Solar Cells 2015, 140, 366CrossRefGoogle Scholar
  9. [9]
    Xie M. Y., Li X., Ding Y. P., Zhang G. X., Chem. Res. Chinese Universities 2017, 33(5), 794CrossRefGoogle Scholar
  10. [10]
    Li X., Wang K., Xie M. Y., Wu Z., Xie L. D., Chem. Res. Chinese Universities 2017, 33(3), 454CrossRefGoogle Scholar
  11. [11]
    Barin I., Knacke O., Kubaschewski O., Thermochemical Properties of Inorganic Substances, Springer-Verlag, Berlin, 1977CrossRefGoogle Scholar
  12. [12]
    Dessureault Y., Sangster J., Pelton A. D., J. Phys. Chem. Ref. Data, 1990, 19, 1149CrossRefGoogle Scholar
  13. [13]
    Robelin C., Chartrand P., Pelton A. D., J. Chem. Thermodyn., 2015, 83, 12CrossRefGoogle Scholar
  14. [14]
    Margules M., Sitzungsber. Akad. Wiss. Wien. 1895, 104, 1243Google Scholar
  15. [15]
    Borelius G., Ann. Phys-Berlin 1934, 20, 57CrossRefGoogle Scholar
  16. [16]
    Redlich O., Kister A. T., J. Ind. Eng. Chem., 1948, 40, 345CrossRefGoogle Scholar
  17. [17]
    Bale C. W., Pelton A. D., Metall. Trans. 1974, 5, 2323CrossRefGoogle Scholar
  18. [18]
    Perman E. P., J. Chem. Soc., 1922, 121, 2473CrossRefGoogle Scholar
  19. [19]
    Luzhnaya N. P., Tr. Gos. Inst. Prikl. Khim. 1935, 23, 34Google Scholar
  20. [20]
    Blidin V. P., Izv. Sekt. Fiz.-Khim. Anal., Inst. Obshch. Neorg. Khim., Akad. Nauk SSSR 1940, 13, 291Google Scholar
  21. [21]
    Nyankovskaya R. N., Akad. Nauk SSSR 1952, 21, 259Google Scholar
  22. [22]
    Ko H. C., Hu T., Spencer J. G., Huang C. Y., Helper L. G., J. Chem. Eng. Data, 1963, 8, 364CrossRefGoogle Scholar
  23. [23]
    Janecke E., Z. Phys. Chem., 1909, 64, 343Google Scholar
  24. [24]
    Wolters A., Neues Jahrb. Min. Geol.(Beil. Bd.) 1911, 30, 55Google Scholar
  25. [25]
    Sackur O., Z. Phys. Chem., 1912, 78, 550Google Scholar
  26. [26]
    Klochko M. A., Zh. Obshch. Khim 1933, 3, 1026Google Scholar
  27. [27]
    Mukimov S., Ann. Secteur Anal. Phys.-Chim., Inst. Chim. Gen. (USSR) 1940, 12, 19Google Scholar
  28. [28]
    Flood H., Forland T., Nesland A., Acta Chem. Scand. 1951, 5, 1193CrossRefGoogle Scholar
  29. [29]
    Nagornyi G. I., Zimina T. D., Izvest. Fiz.-Khim. Nauch.-Issledovatel. Inst. Irkutsk. Univ. 1953, 2, 31Google Scholar
  30. [30]
    Akopov E. K., Bergman A. G., Zh. Obshch. Khim. 1954, 24, 1524Google Scholar
  31. [31]
    Bergman A. G., Sementsova A. K., Zh. Neorg. Khim. 1958, 3, 383Google Scholar
  32. [32]
    Amadori M., Atti della Accad. Nazion. dei Lincei, Classe di Sc. Fis. Matemat. Nat. Rend. 1914, 22, 332Google Scholar
  33. [33]
    Bergman A. G., Vaksberg N. M., Izv. Akad. Nauk SSSR Otd. Mat. Est. Nauk., 1937, 71Google Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghaiP. R. China
  2. 2.University of Chinese Academy of SciencesBeijingP. R. China

Personalised recommendations