Advertisement

Chemical Research in Chinese Universities

, Volume 34, Issue 3, pp 408–414 | Cite as

Design, Synthesis and Biological Activity of Novel Furocoumarin Derivatives as Stimulators of Melanogenesis and Tyrosinase in B16 Cells

  • Chao Niu
  • Deng Zang
  • Haji Akber Aisa
Article
  • 39 Downloads

Abstract

Sixteen novel and four known(4a, 4d, 4e, 4h) amine derivatives of furocoumarin were synthesized, then submitted to evaluation as stimulators of melanogenesis and tyrosinase in B16 murine cells. Among them, five compounds(4g, 4j―4m) showed potent activating effect on both melanogenesis and tyrosinase in vitro compared with positive control(8-MOP), the most widely used drugs for vitiligo in clinic. Noticeably, compounds 4h and 4j, which contain morpholine and piperazine, were recognized as the most effective stimulator of melanogenesis and tyrosianse in B16 cells separately. These derivatives may serve as lead compounds for further drug discovery for the treatment of vitiligo.

Keywords

Furocoumarin Amine Melanin synthesis Tyrosinase Vitiligo 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

40242_2018_7338_MOESM1_ESM.pdf (4.6 mb)
Design, Synthesis and Biological Activity of Novel Furocoumarin Derivatives as Activator of Melanogenesis and Tyrosinase in B16 Cells

References

  1. [1]
    Ezzedine K., Sheth V., Rodrigues M., Eleftheriadou V., Harris J. E., Hamzavi I. H., Pandya A. G., J. Am. Acad. Dermatol., 2015, 73(5), 883CrossRefGoogle Scholar
  2. [2]
    Ezzedine K., Lim H. W., Suzuki T., Katayama I., Hamzavi I., Lan C. C., Goh B. K., Anbar T., Silva de Castro C., Lee A.Y., Parsad D., van Geel N., Poole I. C., Oiso N., Benzekri L., Spritz R., Gauthier Y., Hann S. K., Picardo M., Taieb A., Pigm. Cell Melanoma Res. 2012, 25(3), E1Google Scholar
  3. [3]
    Harris J. E., J. Invest. Dermatol., 2015, 135(12), 2921CrossRefGoogle Scholar
  4. [4]
    Alikhan A., Felsten L., Daly M., Petronic-Rosic V., J. Am. Acad. Dermatol., 2011, 65(3), 473CrossRefGoogle Scholar
  5. [5]
    Laddha N. C., Dwivedi M., Mansuri M. S., Gani A. R., Ansarullah M., Ramachandran A.V., Dalai S., Begum R., Exp. Dermatol. 2013, 22(4), 245CrossRefGoogle Scholar
  6. [6]
    Spritz R. A., J. Invest. Dermatol., 2011, 131(3), e18CrossRefGoogle Scholar
  7. [7]
    Sandoval-Cruz M., García-Carrasco, M. S ánchez-Porras R., Mendo-za-Pinto C., Jiménez-Hernández M., Munguía-Realpozo P., Ruiz-Argūelles A., Autoimmun Rev. 2011, 10(12), 762CrossRefGoogle Scholar
  8. [8]
    Garcia-Molina M. M., Muñoz-Muñoz J. L., Garcia-Molina F., García-Ruiz P. A., Garcia-Canovas F., J. Agric. Food Chem., 2012, 60(25), 6447CrossRefGoogle Scholar
  9. [9]
    Ismaya W. T., Rozeboom H. J., Weijn A., Mes J. J., Fusetti F., Wichers H. J., Dijkstra B. W., Biochem. 2011, 50(24), 5477CrossRefGoogle Scholar
  10. [10]
    Wu C. Y., Sun Z. P., Ye Y. Y., Han X. H., Song X.Y., Liu S., Fitotera-pia 2013, 91, 205CrossRefGoogle Scholar
  11. [11]
    Fitzpatrick T. B., Pathak, M. A., J. Invest. Dermatol. 1959, 32(2), 229CrossRefGoogle Scholar
  12. [12]
    Yao L., Li Q., Shang J., J. Xinjiang Med. Univ., 2010, 33(10), 1191Google Scholar
  13. [13]
    Zhou J., Shang J., Ping F. F., Zhao G. R., J. Ethnopharmacol., 2012, 143(2), 639CrossRefGoogle Scholar
  14. [14]
    Jois H. S., Manjunath B. L., Venkata R. S., J. Indian Chem. Soc., 1933, 10, 45Google Scholar
  15. [15]
    Späth E., Ber. Deut. Chem. Ges. 1937, 70, 83CrossRefGoogle Scholar
  16. [16]
    El Mofty A. M., Vitiligo and Psoralens, Pergamon Press, Oxford, 1968, 1147Google Scholar
  17. [17]
    Fitzpatrick T. B., Parrish J. A., Pathak M. A., Phototherapy of Vitili-go(Idiopathic leukoderma) in Sunlight and Man, Tokyo University Press, Tokyo, 1974, 783Google Scholar
  18. [18]
    Whitton M. E., Ashcroft D. M., González U. J., Am. Acad. Dermatol. 2008, 59(4), 713CrossRefGoogle Scholar
  19. [19]
    Felsten L. M., Alikhan A., Petronic-Rosic V., J. Am. Acad. Dermatol., 2011, 65(3), 493CrossRefGoogle Scholar
  20. [20]
    Tippisetty S., Goudi D., Mohammed A. W., Jahan P., Toxicol. In Vitro, 2013, 27(1), 38CrossRefGoogle Scholar
  21. [21]
    Kerns E. H., Di L., Drug Discov. Today 2003, 8(7), 316CrossRefGoogle Scholar
  22. [22]
    Dreassi E., Zizzari A. T., Mori M., Filippi I., Belfiore A., Naldini A., Carraro F., Santucci A., Schenone S., Botta M., Eur. J. Med. Chem., 2010, 45(12), 5958CrossRefGoogle Scholar
  23. [23]
    Niu C., Pang G. X., Li G., Dou J., Nie L. F., Himit H., Kabas M., Aisa H. A., Bioorg. Med. Chem. 2016, 24(22), 5960CrossRefGoogle Scholar
  24. [24]
    Nakamura T., Wada H., Kurebayashi H., McInally T., Bonnert R., Isobe Y., Bioorg. Med. Chem. Lett. 2013, 23(3), 669CrossRefGoogle Scholar
  25. [25]
    Sensi M., Catani M., Castellano G., Nicolini G., Alciato F., Tragni G., De Santis G., Bersani I., Avanzi G., Tomassetti A., Canevari S., Ani-chini S., J. Invest. Dermatol. 2011, 131(12), 2448Google Scholar
  26. [26]
    Roh E., Yun C. Y., Yun J. Y., Park D., Doo K. N., Yeon H. B., Jung S. H., Park S. K., Kim Y. B., Han S. B., Kim Y., J. Invest. Dermatol., 2013, 133(4), 1072CrossRefGoogle Scholar
  27. [27]
    Binda C., Wang J., Pisani L., Caccia C., Carotti A., Salvati P., Edmondson D. E., Mattevi A., J. Med. Chem., 2007, 50(23), 5848CrossRefGoogle Scholar
  28. [28]
    Chilin A., Manzini P., Caffieri S., Rodighiero P., Guiotto A., J. Heterocycl. Chem., 2001, 38(2), 431CrossRefGoogle Scholar
  29. [29]
    Patel J. M., Soman S. S., J. Heterocycl. Chem., 2010, 47(2), 379Google Scholar
  30. [30]
    Chattopadhyay K., Fenster E., Grenning A. J. J. Tunge J. A., Beilstein J. Org. Chem., 2012, 8(133), 1200CrossRefGoogle Scholar
  31. [31]
    Kim H. J., Kim J. S., Woo J. T., Lee I. S., Cha B. Y., Acta Biochim. Biophys. Sin. 2015, 47(7), 548CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Plant Resources and Chemistry in Arid Regions, State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and ChemistryChinese Academy of SciencesUrumqiP. R. China
  2. 2.University of Chinese Academy of SciencesBeijingP. R. China

Personalised recommendations