Chemical Research in Chinese Universities

, Volume 34, Issue 3, pp 415–422 | Cite as

Synthesis of Bisboronic Acids and Their Selective Recognition of Sialyl Lewis X Antigen

  • Yan’en Wang
  • Xueyan Li
  • Hua Chen
  • Mengyuan Zhu
  • Xiaoliu Li


The development of sensors that recognize Lewis oligosaccharides can help the diagnosis and early detection of cancer. Herein, we reported the design and synthesis of a series of anthracene-based bisboronic acids (9a—9e) with different N-substituents near the boronic acid unit. Among them, compound 9a could recognize sialyl Lewis X(sLex) with selectivity over other Lewis sugars, and could significantly stain sLex-expressing HEPG2 cells with selectivity over the range of 0.1—10 μmol/L. Compound 9a possibly has two properly positioned boronic acids caused by the steric hindrance by the near N-benzyl substituent group, which empower its sLex selectivity and higher binding affinity.


Lewis sugar Bisboronic acid Anthracene-based fluorescent probe Biochemical recognition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We also thanks Professor WANG Binghe(Georgia State University, USA) for his help in revising the manuscript.

Supplementary material

40242_2018_7328_MOESM1_ESM.pdf (1.4 mb)
Synthesis of novel bisboronic acids and their selective recognition of the Sialyl Lewis X antigen


  1. [1]
    Sun X., Zhai W., Fossey J. S., James T. D., Chem. Commun. 2016, 52, 3456CrossRefGoogle Scholar
  2. [2]
    Dai C. F., Sagwal A., Cheng Y. F., Peng H. J., Chen W. X., Wang B. H., Pure Appl. Chem. 2012, 84, 2479CrossRefGoogle Scholar
  3. [3]
    Yang W., Gao S., Gao X., Karnati V. R., Ni W., Wang B., Hooks W. B., Carson J., Weston B. Bioorg. Med. Chem. Lett., 2002, 12, 2175CrossRefPubMedGoogle Scholar
  4. [4]
    Dai C., Cazares L. H., Wang L., Chu Y., Wang S. L., Troyer D. A., Semmes O. J., Drake R. R., Wang B., Chem. Commun. 2011, 47, 10338CrossRefGoogle Scholar
  5. [5]
    Chu Y., Wang D. Z., Wang K., Liu Z. R., Weston B., Wang B. H., Bioorg. Med. Chem. Lett. 2013, 23, 6307CrossRefPubMedGoogle Scholar
  6. [6]
    Sun X. L., Zhu B., Ji D. K., Chen Q. B., He X. P., Chen G. R., James T. D., ACS Appl. Mater. Interfaces, 2014, 6, 10078CrossRefPubMedGoogle Scholar
  7. [7]
    Guo S., Chen J., Cai B. Y., Chen W. W., Li Y. F., Sun X. L., Chen G. R., He X. P., James T. D., Mater. Chem. Front. 2017, 1, 61CrossRefGoogle Scholar
  8. [8]
    Yang W., Fan H., Gao S., Gao X., Ni W., Karnati V., Hooks W. B., Carson J., Weston B., Wang B., Chem. Biol. 2004, 11, 439CrossRefPubMedGoogle Scholar
  9. [9]
    Xu X. D., Cheng H., Chen W. H., Cheng S. X., Zhuo R. X., Zhang X. Z., Sci. Rep. 2013, 3, 2679CrossRefPubMedPubMedCentralGoogle Scholar
  10. [10]
    Craig S., Bioorg. Chem. 2012, 40, 137CrossRefPubMedGoogle Scholar
  11. [11]
    Gao X., Zhu M., Fan H., Yang W., Karnati V. V. R., Gao S., Carson J., Weston B., Wang B., Bioorg. Med. Chem. Lett. 2015, 25, 2501CrossRefPubMedPubMedCentralGoogle Scholar
  12. [12]
    Wang Y., Rong R., Chen H., Zhu M., Wang B., Li X., Bioorg. Med. Chem. Lett. 2017, 27, 1983CrossRefPubMedGoogle Scholar
  13. [13]
    Lin Y. I., Lang S. A., Seifert C. M., Child R. G., Morton G. O., Fabio P. F., J. Org. Chem., 1979, 44, 4701CrossRefGoogle Scholar
  14. [14]
    Cambridgesoft, ChemDraw Professional 2016, 2016Google Scholar
  15. [15]
    Bowers K. J., Chow D. E., Xu H., Dror R. O., Eastwood M. P., Gregersen B. A., Klepeis J. L., Kolossvary I., Moraes M. A., Sacer-doti F. D., SC 2006 Conference, Proceedings of the ACM/IEEE, IEEE, New York, 2006, 43Google Scholar
  16. [16]
    Shaw D. E., Research, Desmond Molecular Dynamics System, New York, 2016Google Scholar
  17. [17]
    Schrödinger, Maestro-Desmond Interoperability Tools, New York, 2016Google Scholar
  18. [18]
    Larkin J. D., Frimat K. A., Fyles T. M., Flower S. E., James T. D., New J. Chem., 2010, 34, 2922CrossRefGoogle Scholar
  19. [19]
    James T. D., Sandanayake K. R. A. S., Shinkai S., Angew. Chem. Int. Ed. Engl. 1994, 33, 2207CrossRefGoogle Scholar
  20. [20]
    James T. D., Sandanayake K. R. A. S., Iguchi R., Shinkai S. J. Am. Chem. Soc., 1995, 117, 8982CrossRefGoogle Scholar
  21. [21]
    Que E. L., Domaille D. W., Chang C. J., Chem. Rev. 2008, 108, 1517CrossRefPubMedGoogle Scholar
  22. [22]
    Vendrell M., Zhai D., Er J. C., Chang Y. T., Chem. Rev. 2012, 112, 4391CrossRefPubMedGoogle Scholar
  23. [23]
    Su J., Yu M., Lin Z., Zhao H., Liu H., Chem. Res. Chinese Universi-ties 2017, 33(6), 908CrossRefGoogle Scholar
  24. [24]
    Chang M. H., Chang C. N., Tetrahedron Lett. 2014, 55, 4437CrossRefGoogle Scholar
  25. [25]
    Tang G., Zhang Y., Zhang Y., Zhou P., Lin Z., Wang Y., Chem. J. Chinese Universities, 2017, 38(11), 2061Google Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental ScienceHebei UniversityBaodingP. R. China
  2. 2.College of ScienceAgricultural University of HebeiBaodingP. R. China
  3. 3.Department of Chemistry and Center for Diagnostics and TherapeuticsGeorgia State UniversityAtlantaUSA

Personalised recommendations