Advertisement

Chemical Research in Chinese Universities

, Volume 34, Issue 2, pp 318–325 | Cite as

Fabrication and Properties of Graphene Oxide/Sulfonated Polyethersulfone Layer-by-layer Assembled Polyester Fiber Composite Proton Exchange Membranes

  • Lihua Huang
  • Yao He
  • Liying Jin
  • Xiuwei Hou
  • Luyang Miao
  • Changli Lü
Article
  • 38 Downloads

Abstract

Using the hydrogen-bonding interaction between graphene oxide(GO) and sulfonated polyethersulfone (SPES), we constructed the multilayer structure of GO and SPES on the polyester fiber mats via layer-by-layer self-assembly. In each self-assembled layer, sulfonic acid groups are arranged along the axis of fiber, which provides the long-range proton transmission channels, promoting the rapidly proton conduction. The performances of the composite membranes based on SPES and multilayer assembled polyester fiber mats were studied. The results show that the proton conductivity of composite membranes increases with the increasing assembly layers. At the same time, the mechanical properties and methanol-resistance of the composite membranes were obviously improved.

Keywords

Composite proton exchange membrane Graphene oxide Sulfonated polyethersulfone Polyester fiber Layer-by-layer assembly Property 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Thenmozhi S., Dharmaraj N., Kadirvelu K., Kim H. Y., Mater. Sci. Eng. B 2017, 217, 36CrossRefGoogle Scholar
  2. [2]
    Nie G. D., Li S. K., Lu X. F., Wang C., Chem. J. Chinese Universities, 2013, 34(1), 15Google Scholar
  3. [3]
    Greiner A., Wendorff J. H., Angew. Chem. Int. Ed. 2007, 46, 5670CrossRefGoogle Scholar
  4. [4]
    Wang X., Hsiao B. S., Curr. Opin. Chem. Eng. 2016, 12, 62CrossRefGoogle Scholar
  5. [5]
    Ding Y., Hou H., Zhao Y., Zhu Z., Fong H., Prog. Polym. Sci. 2016, 61, 67CrossRefGoogle Scholar
  6. [6]
    Choi J., Wycisk R., Zhang W., Pintauro P. N., Lee K. M., Mather P. T., ChemSusChem 2010, 3, 1245CrossRefGoogle Scholar
  7. [7]
    Santos L. D., Rose S., Sel O., Maréchal M., Perrot H., Laberty-Robert C., J. Membr. Sci., 2016, 513, 12CrossRefGoogle Scholar
  8. [8]
    Choi J., Lee K. M., Wycisk R., Pintauro P. N., Mather P. T., J. Elec-trochem. Soc., 2010, 157, B914CrossRefGoogle Scholar
  9. [9]
    Dong B., Gwee L., Salas-de la Cruz D. Winey K. I., Elabd Y. A. Nano Lett., 2010, 10, 3785CrossRefGoogle Scholar
  10. [10]
    Yao Y. F., Ji L. W., Lin Z., Li Y., Alcoutlabi M., Hamouda H., Zhang X. W., ACS Appl. Mater. Interfaces, 2011, 3, 3732CrossRefGoogle Scholar
  11. [11]
    Yao F. Y., Guo B. K., Ji L. W., Jung K. H., Lin Z., Alcoutlabi M., Hamouda H., Zhang X. W., Electrochem. Commun. 2011, 13, 1005CrossRefGoogle Scholar
  12. [12]
    Mollá S., Compañ V., J. Membr. Sci., 2011, 372, 191CrossRefGoogle Scholar
  13. [13]
    Shabani I., Hasani-Sadrabadi M. M., Haddadi-Asl V., Soleimani M., J. Membr. Sci., 2011, 368, 233CrossRefGoogle Scholar
  14. [14]
    Lin H. L., Wang S. H., Chiu C. K., T. Yu L., Chen L. C., Huang C. C., Cheng T. H., Lin J. M., J. Membr. Sci., 2010, 365, 114CrossRefGoogle Scholar
  15. [15]
    Wang S. H., Lin H. L., J. Power Sources, 2014, 257, 254CrossRefGoogle Scholar
  16. [16]
    Chen P., Wu H. J., Yuan T., Zou Z. Q., Zhang H. F., Zheng J. W., Yang H., J. Power Sources, 2014, 255, 70CrossRefGoogle Scholar
  17. [17]
    Choi J., Lee K. M., Wycisk R., Pintauro P. N., Mather P. T., Macro-molecules 2008, 41, 4569CrossRefGoogle Scholar
  18. [18]
    Tamura T., Kawakami H., Nano Lett. 2010, 10, 1324CrossRefGoogle Scholar
  19. [19]
    Tanaka M., Takeda Y., Wakiya T., Wakamoto Y., Harigaya K., Ito T., Tarao T., Kawakami H., J. Power Sources, 2017, 342, 125CrossRefGoogle Scholar
  20. [20]
    Zhang S., He G., Gong X., Zhu X., Wu X., Sun X., Zhao X., Li H., J. Membr. Sci., 2015, 493, 58CrossRefGoogle Scholar
  21. [21]
    Bakangura E., Wu L., Ge L., Yang Z., Xu T., Prog. Polym. Sci. 2016, 57, 103CrossRefGoogle Scholar
  22. [22]
    Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Zhang Y., Dubonos S. V., Grigorieva I. V., Firsov A. A., Science 2004, 306, 666CrossRefGoogle Scholar
  23. [23]
    Allen M. J., Tung V. C., Kaner R. B., Chem. Rev. 2010, 110, 132CrossRefGoogle Scholar
  24. [24]
    Pandey R. P., Shukla G., Manohar M., Shahi V. K., Adv. Colloid In-terface Sci. 2017, 240, 15CrossRefGoogle Scholar
  25. [25]
    Choi B. G., Hong J., Park Y. C., Jung D. H., Hong W. H., Hammond P. T., Park H., ACS Nano, 2011, 5, 5167CrossRefGoogle Scholar
  26. [26]
    Zarrin H., Higgins D., Jun Y., Chen Z., Fowler M., J. Phys. Chem. C, 2011, 115, 20774CrossRefGoogle Scholar
  27. [27]
    Mishra A. K., Kim N. H., Jung D., Lee J. H., J. Membr. Sci., 2014, 458, 128CrossRefGoogle Scholar
  28. [28]
    Gao W., Wu G. Janicke M. T., Cullen D. A. Mukundan R., Baldwin J. K. Brosha E. L., Galande C. Ajayan P. M., More K. L. Dattel-baum A. M., Zelenay P. Angew. Chem. Int. Ed., 2014, 53, 3588CrossRefGoogle Scholar
  29. [29]
    Jia W., Tang B., Wu P., ACS Appl. Mater. Interfaces, 2016, 8, 28955CrossRefGoogle Scholar
  30. [30]
    He G., Chang C., Xu M., Hu S., Li L., Zhao J., Li Z., Li Z., Yin Y., Gang M., Wu H., Yang X., Guiver M. D., Jiang Z., Adv. Funct. Mater. 2015, 25, 7502CrossRefGoogle Scholar
  31. [31]
    He Y., Tong C., Geng L., Liu L., Lü C., J. Membr. Sci., 2014, 458, 36CrossRefGoogle Scholar
  32. [32]
    Zhao L., Li Y., Zhang H., Wu W., Liu J., Wang J., J. Power Sources, 2015, 286, 445CrossRefGoogle Scholar
  33. [33]
    Zhao Y., Fu Y., He Y., Hu B., Liu L., Lü J., Lü C., RSC Adv., 2015, 5, 93480CrossRefGoogle Scholar
  34. [34]
    Hasani-Sadrabadi M. M., Dashtimoghadam E., Ghaffarian S. R., Sadrabadi M. H. H., Heidari M., Moaddel H., Renew. Energ. 2010, 35, 226CrossRefGoogle Scholar
  35. [35]
    Hummers W. S., Offeman R. E., J. Am. Chem. Soc., 1958, 80, 1339CrossRefGoogle Scholar
  36. [36]
    Lin Y., Jin J., Song M., J. Mater. Chem., 2011, 21, 3455CrossRefGoogle Scholar
  37. [37]
    Park S. J., Lee K. S., Bozoklu G., Cai W., Nguyen S. T., Ruoff R. S., ACS Nano, 2008, 2, 572CrossRefGoogle Scholar
  38. [38]
    Kundu A., Nandi S., Das P., Nandi A. K., ACS Appl. Mater. Interfaces, 2015, 7, 3512CrossRefGoogle Scholar
  39. [39]
    Jiang K., Ye C., Zhang P., Wang X., Zhao Y., Macromolecules 2012, 45, 1346CrossRefGoogle Scholar
  40. [40]
    Chien H. C., Tsai L. D., Huang C. P., Kang C. Y., Lin J. N., Chang F. C., Int. J. Hydrogen Energ., 2013, 38, 13792CrossRefGoogle Scholar
  41. [41]
    Liu Y. H., Wang J. T., Zhang H. Q., Ma C. M., Liu J. D., Cao S. K., Zhang X., J. Power Sources, 2014, 269, 898CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.First Hospital of Jilin UniversityChangchunP. R. China
  2. 2.College of ChemistryNortheast Normal UniversityChangchunP. R. China
  3. 3.Second Hospital of Jilin UniversityChangchunP. R. China

Personalised recommendations