Advertisement

Chemical Research in Chinese Universities

, Volume 34, Issue 2, pp 247–253 | Cite as

Fluorine Modified TAPO-5: Synthesis and Catalytic Performance in Cyclohexanone Ammoximation

  • Hengjie Li
  • Pengfei Gao
  • Xiaolu Xue
  • Hongxi Zhang
  • Yongxiang Zhao
Article

Abstract

A series of fluorine modified TAPO-5 molecular sieves was synthesized by one-pot method using ammo-nium hexafluorotitanate as titanium and fluorine sources. The XPS and DRS UV-Vis results indicated that the exis-tence of F could promote the formation of tetrahedrally coordinated framework Ti and Al, meanwhile, inhibit the formation of anatase TiO2 in TAPO-5 sieves due to the unique role of F in the sol-gel process of metal ions. Further-more, TG, contact angle test, Py-FTIR and 27Al MAS NMR results revealed that fluorine modification increased the surface hydrophobicity and the Lewis acidity of Ti active sites through forming Al x F y units in the neighborhood. All these factors make these fluorine modified TAPO-5 sieves exhibit good catalytic performance in the ammoximation of cyclohexanone.

Keywords

TAPO-5 Fluorine modification Hydrophobicity Lewis acidity Cyclohexanone ammoximation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

40242_2018_7296_MOESM1_ESM.pdf (238 kb)
Fluorine modified TAPO-5: synthesis and catalytic performance in cyclohexanone ammoximation

References

  1. [1]
    Taramasso M., Perego G., Notari B., Preparation of Porous Crystal-line Synthetic Material Comprised of Silicon and Titanium Oxides, US 4410501A, 1983 Google Scholar
  2. [2]
    Notari B., Adv. Catal., 1996, 41, 253Google Scholar
  3. [3]
    Corma A., Camblor M. A., Esteve P., Martínez A., Pérez-Pariente J., J. Catal., 1994, 145, 151CrossRefGoogle Scholar
  4. [4]
    Van der Waal J. C., Rigutto M. S., Van Bekkum H., Appl. Catal. A, 1998, 167, 331CrossRefGoogle Scholar
  5. [5]
    Xia C. J., Lin M., Zheng A. G., Xiang Y. J., Zhu B., Xu G. T., Shu X. T., J. Catal., 2016, 338, 340CrossRefGoogle Scholar
  6. [6]
    Lin M., Xia C. J., Zhu B., Li H., Shu X. T., Chem. Eng. J., 2016, 295, 370CrossRefGoogle Scholar
  7. [7]
    Yan S., Zhang S. J., Zhao Y. X., Li X. M., Zhang Y. M., Zhang H., Wang J., Fu J. Q., Chem. J. Chinese Universities, 2016, 37(5), 946Google Scholar
  8. [8]
    Wilson S. T., Look B. M., Messina C. A., Cannon T. R., Flannigan E. M., J. Am. Chem. Soc., 1982, 104, 1146CrossRefGoogle Scholar
  9. [9]
    Ulagappan N., Krishnasamy V., J. Chem. Soc. Chem. Commun., 1995, (3), 373CrossRefGoogle Scholar
  10. [10]
    Zahedi-Niaki M. H., Joshi P. N., Kaliaguine S., Chem. Commun., 1996, (1), 47CrossRefGoogle Scholar
  11. [11]
    Jiao X. L., Chen D. R., Pang W. Q., Yue Y., Mater. Lett., 2001, 51, 236CrossRefGoogle Scholar
  12. [12]
    Prakash A. M., Kevan L., Zahedi-Niaki M. H., Kaliaguine S., J. Phys. Chem. B, 1999, 103, 831CrossRefGoogle Scholar
  13. [13]
    Zahedi-Niaki M. H., Kapoor M. P., Kaliaguine S., J. Catal., 1998, 177, 231CrossRefGoogle Scholar
  14. [14]
    Lee S. O., Raja R., Harris K. D. M., Thomas J. M., Johnson B. F. G., Sankar G., Angew. Chem. Int. Ed., 2003, 42, 1520CrossRefGoogle Scholar
  15. [15]
    Alfayate A., Marquez-Alvarez C., Grande-Casas M., Sanchez- Sanchez M., Pérez-Pariente J., Catal. Today, 2014, 227, 57CrossRefGoogle Scholar
  16. [16]
    Endud S., Roslan N., Ramli Z., Lintang H. O., Adv. Mater. Res., 2015, 1109, 360CrossRefGoogle Scholar
  17. [17]
    Tuel A., Zeolites, 1995, 15, 228CrossRefGoogle Scholar
  18. [18]
    Hsu B. Y., Cheng S., Chen J. M., J. Mol. Catal. A: Chem., 1999, 149, 7CrossRefGoogle Scholar
  19. [19]
    Sanchez-Sanchez M., Sankar G., Gomez-Hortiguela L., Micropor. Mesopor. Mater., 2008, 114, 485CrossRefGoogle Scholar
  20. [20]
    Camblor M. A., Corma A., Martinez A., Perez-Pariente J., J. Chem. Soc. Chem. Commun., 1992, (8), 589CrossRefGoogle Scholar
  21. [21]
    Camblor M. A., Costantini M., Corma A., Gilbert L., Esteve P., Mar-tinez A., Valencia S., Chem. Commun., 1996, (11), 1339CrossRefGoogle Scholar
  22. [22]
    Zahedi-Niaki M. H., Zaidi S. M. J., Kaliaguine S., Micropor. Meso-por. Mater., 1999, 32, 251CrossRefGoogle Scholar
  23. [23]
    Maurelli S., Chiesa M., Giamello E., Leithall R. M., Chem. Commun., 2012, 48, 8700CrossRefGoogle Scholar
  24. [24]
    Fang X. Q., Wang Q., Zheng A. M., Liu Y. M., Wang Y. N., Deng X. J., Wu H. H., Deng F., He M. Y., Wu P., Catal. Sci. Technol., 2012, 2, 2433CrossRefGoogle Scholar
  25. [25]
    Yang Y. L., Ding J. H., Wang B. S., Wu J., Zhao C., Gao G. H., Wu P., J. Catal., 2014, 320, 160CrossRefGoogle Scholar
  26. [26]
    Zhuo Z. X., Wu L. Z., Wang L., Ding Y. C., Zhang X. Q., Liu Y. M., He M. Y., RSC Adv., 2014, 4, 55685CrossRefGoogle Scholar
  27. [27]
    Zhuo Z. X., Wang L., Zhang X. Q., Wu L. Z., Liu Y. M., He M. Y., J. Catal., 2015, 329, 107CrossRefGoogle Scholar
  28. [28]
    Egeblad K., Kustova M., Klitgaard S. K., Zhu K., Christensen C. H., Micropor. Mesopor. Mater., 2007, 101, 214CrossRefGoogle Scholar
  29. [29]
    Caullet P., Paillaud J. L., Simon-Masseron A., Soulard M., Patarin J., C. R. Chimie., 2005, 8, 245CrossRefGoogle Scholar
  30. [30]
    Manjon-Sanz A., Sanchez-Sanchez M., Munoz-Gomez P., Garcia R., Sastre E., Micropor. Mesopor. Mater., 2010, 131, 331CrossRefGoogle Scholar
  31. [31]
    Manjon-Sanz A., Sanchez-Sanchez M., Sastre E., Catal. Today, 2012, 179, 102CrossRefGoogle Scholar
  32. [32]
    Zahedi-Niaki M. H., Joshi P. N., Kaliaguine S., Stud. Surf. Sci. Catal., 1997, 105, 1013CrossRefGoogle Scholar
  33. [33]
    Hasegawa Y., Ayame A., Catal. Today, 2001, 71, 177CrossRefGoogle Scholar
  34. [34]
    Alfayate A., Sanchez-Sanchez M., Perez-Pariente J., Micropor. Mesopor. Mater., 2014, 190, 334CrossRefGoogle Scholar
  35. [35]
    Zahedi-Niaki M. H., Beland F., Bonneviot L., Kaliaguine S., Stud. Surf. Sci. Catal., 2002, 142, 125CrossRefGoogle Scholar
  36. [36]
    Rios S. P. O., Pereira R., Cardoso D., Mater. Res., 2002, 5, 315CrossRefGoogle Scholar
  37. [37]
    Youngman R. E., Sen S. J., J. Non-Cryst. Solids, 2004, 349, 10CrossRefGoogle Scholar
  38. [38]
    Yu J. C., Yu J., Ho W., Jiang Z., Zhang L., Chem. Mater., 2001, 14, 3808CrossRefGoogle Scholar
  39. [39]
    Akolekar D. B., Ryoo R., J. Chem. Soc. Faraday Trans., 1996, 92, 4617CrossRefGoogle Scholar
  40. [40]
    Akolekar D. B., Howe R. F., J. Chem. Soc. Faraday Trans., 1997, 93, 3263CrossRefGoogle Scholar
  41. [41]
    Barzetti T., Selli E., Moscotti D., Forni L., J. Chem. Soc., Faraday Trans., 1996, 92, 1401CrossRefGoogle Scholar
  42. [42]
    Anderson M. W., Klinowski J., J. Chem. Soc., Faraday Trans., 1986, 82, 1449CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Chemistry and Chemical Engineering, Engineering Research Centre of Ministry of Education for Fine ChemicalsShanxi UniversityTaiyuanP. R. China

Personalised recommendations