Chemical Research in Chinese Universities

, Volume 34, Issue 2, pp 260–268 | Cite as

Vc-Functionalized Fe3O4 Nanocomposites as Peroxidase-like Mimetics for H2O2 and Glucose Sensing

Article
  • 7 Downloads

Abstract

A simple and efficient colorimetric biosensing for hydrogen peroxide and glucose with peroxidase-like vitamin C(Vc) functionalized Fe3O4 magnetic nanoparticles(VcFe3O4 MNPs) as a catalyst is reported. Compared with Fe3O4 MNPs and other catalysts, VcFe3O4 MNPs exhibited superior catalytic properties. Kinetic studies indicated that vitamin C incorporated on Fe3O4 MNPs improved the affinity toward H2O2. As low as 0.29 μmol/L H2O2 can be detected with a wide linear range of 0.5―100 μmol/L H2O2; moreover, as low as 0.288 μmol/L glucose can be detected with a linear range of 0.5―25 μmol/L glucose. The detection method was highly sensitive in sensing H2O2 and glucose. The robustness of VcFe3O4 MNPs rendered them suitable for wide ranging applications.

Keywords

VcFe3O4 Colorimetric biosensing Enzyme mimetics Hydrogen peroxide Glucose 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Jin Z., Chen R., Colon L. A., Anal. Chem., 1997, 69(7), 1326CrossRefGoogle Scholar
  2. [2]
    Wolfbeis O. S., Durkop A., Wu M., Lin Z. H., Angew. Chem. Int. Ed., 2002, 41(23), 4495CrossRefGoogle Scholar
  3. [3]
    Liu Z., Liu L., Sun M., Su X., Biosens. Bioelectron., 2015, 65, 145CrossRefGoogle Scholar
  4. [4]
    Hu R., Liu Y. R., Zhang X. B., Tan W., Shen G. L., Yu R. Q., Biosens. Bioelectron., 2013, 41, 442CrossRefGoogle Scholar
  5. [5]
    Luo W., Abbas M. E., Zhu L., Deng K., Tang H., Anal. Chim Acta, 2008, 629(1/2), 1CrossRefGoogle Scholar
  6. [6]
    Zhang L., Zhai Y., Gao N., Wen D., Dong S., Electrochem. Commun., 2008, 10(10), 1524CrossRefGoogle Scholar
  7. [7]
    Sato T., Katayama K., Arai T., Sako T., Tazaki H., Res. Vet Sci., 2008, 84 (1), 26CrossRefGoogle Scholar
  8. [8]
    Hao M., Liu N., Ma Z., Analyst, 2013, 138(15), 4393CrossRefGoogle Scholar
  9. [9]
    Rzygalinski I., Pobozy E., Drewnowska R., Trojanowicz M., Elec-trophoresis, 2008, 29(8), 1741CrossRefGoogle Scholar
  10. [10]
    Chen J., Ge J., Zhang L., Li Z., Qu L., Actuator B: Chem., 2016, 233, 438CrossRefGoogle Scholar
  11. [11]
    Liu Y., Yuan M., Qiao L., Guo R., Biosens. Bioelectron., 2014, 52, 391CrossRefGoogle Scholar
  12. [12]
    Gao L., Zhuang J., Nie L., Zhang J., Zhang Y., Gu N., Wang T., Feng J., Yang D., Perrett S., Yan X., Nat. Nanotechnol., 2007, 2(9), 577CrossRefGoogle Scholar
  13. [13]
    Shi W., Wang Q., Long Y., Cheng Z., Chen S., Zheng H., Huang Y., Chem. Commun. (Camb)., 2011, 47(23), 6695CrossRefGoogle Scholar
  14. [14]
    Ding C., Yan Y., Xiang D., Zhang C., Xian Y., Microchimica. Acta, 2015, 183(2), 625CrossRefGoogle Scholar
  15. [15]
    Chen W., Chen J., Feng Y. B., Hong L., Chen Q. Y., Wu L. F., Lin X. H., Xia X. H., Analyst., 2012, 137(7), 1706CrossRefGoogle Scholar
  16. [16]
    Yin J., Cao H., Lu Y., J. Mater. Chem., 2012, 22(2), 527CrossRefGoogle Scholar
  17. [17]
    Guo X., Guo B., Chem. Res. Chinese Universities, 2017, 33(4), 530CrossRefGoogle Scholar
  18. [18]
    Dong Y. L., Zhang H. G., Rahman Z. U., Su L., Chen X. J., Hu J., Chen X. G., Nanoscale, 2012, 4(13), 3969CrossRefGoogle Scholar
  19. [19]
    Liu Q., Li H., Zhao Q., Zhu R., Yang Y., Jia Q., Bian B., Zhuo L., Mater. Sci. Eng. C Mater. Biol. Appl., 2014, 41, 142CrossRefGoogle Scholar
  20. [20]
    Sun C., Zhou R., E J., Sun J., Su Y., Ren H., RSC Adv., 2016, 6(13), 10633CrossRefGoogle Scholar
  21. [21]
    Fukuchi S., Nishimoto R., Fukushima M., Zhu Q., Appl. Catal B: Environ., 2014, 147 411CrossRefGoogle Scholar
  22. [22]
    Lu W. S., Shen Y. H., Xie A. J., Zhang W. Q., J. Magn. Magn. Mater., 2010, 322(13), 1828CrossRefGoogle Scholar
  23. [23]
    Lian P. C., Zhu X. F., Xiang H. F., Li Z., Yang W. S., Wang H. H., Electrochim. Acta., 2010, 56(2), 834CrossRefGoogle Scholar
  24. [24]
    Han S., Hu L., Liang Z., Wageh S., Al-Ghamdi A. A., Chen Y., Fang X., Adv. Funct. Mater., 2014, 24(36), 5719CrossRefGoogle Scholar
  25. [25]
    Liu S., Zheng L., Yu P., Han S., Fang X., Adv. Funct. Mater., 2016, 26(19), 3331CrossRefGoogle Scholar
  26. [26]
    Zheng K., Di M., Zhang J., Bao W., Liang D., Pang G., Fang Z., Li C., Chem. Res. Chinese Universities, 2017, 33(4), 648CrossRefGoogle Scholar
  27. [27]
    Chang Y. P., Ren C. L., Qu J. C., Chen X. G., Appl. Surf. Sci., 2012, 261 504CrossRefGoogle Scholar
  28. [28]
    Li Q., Tang G., Xiong X., Cao Y., Chen L., Xu F., Tan H., Sens. Act. B: Chem., 2015, 215, 86CrossRefGoogle Scholar
  29. [29]
    Nowack B., Environ. Sci. Technol., 2002, 36(19), 4009CrossRefGoogle Scholar
  30. [30]
    Xu L., Wang J., Environ. Sci. Technol., 2012, 46(18), 10145CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Groundwater Resources and Environment, Ministry of Education, College of Environment and ResourcesJilin UniversityChangchunP. R. China

Personalised recommendations