Chemical Research in Chinese Universities

, Volume 34, Issue 2, pp 164–168 | Cite as

Synthesis of Fluorescent Carbon Quantum Dots from Dried Lemon Peel for Determination of Carmine in Drinks

  • Anmei Su
  • Di Wang
  • Xin Shu
  • Qingmei Zhong
  • Yongren Chen
  • Jiachen Liu
  • Yilin Wang


Carbon quantum dots(CQDs) with a quantum yield of 11% were synthesized via a simple, low-cost and green hydrothermal treatment using dried lemon peel as carbon source. The obtained CQDs showed a strong emission at the wavelength of 505 nm with an optimum excitation of 425 nm. Carmine with maximum absorption wavelength at 508 nm could selectively quench the fluorescence of CQDs. Based on this principle, a fluorescence probe was developed for carmine determination. The quenching mechanism of CQDs was elucidated. A linear relationship was found in the carmine concentration range of 0.20—30.00 mg/L with the detection limit(3σ/k) of 0.16 mg/L. Satisfactory results were achieved when the method was applied for the determination of carmine in soft drinks.


Carbon quantum dot Determination Carmine Fluorescence quenching 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Heydari R., Hosseini M., Zarabi S., Spectrochim. Acta A, 2015, 150, 786CrossRefGoogle Scholar
  2. [2]
    Ma Y., Zhang G., Pan J., J. Agric. Food Chem., 2012, 60, 10867CrossRefGoogle Scholar
  3. [3]
    Oka H., Ikai Y., Kawamura N., Yamada M., Inoue H., Ohno T., Inagaki K., Kuno A., Yamamoto N., J. Chromatogr., 1987, 411, 437CrossRefGoogle Scholar
  4. [4]
    Lim H. S., Choi J. C., Song S. B., Kim M., Food Chem., 2014, 158, 521CrossRefGoogle Scholar
  5. [5]
    Jager A. V., Tonin F. G., Tavares M. F. M., J. Sep. Sci., 2005, 28, 957CrossRefGoogle Scholar
  6. [6]
    Arvand M., Saberi M., Ardaki M. S., Mohammadi A., Talanta, 2017, 173, 60CrossRefGoogle Scholar
  7. [7]
    Secula M. S., Creţescu I., Petrescu S., Desalination, 2011, 277, 227CrossRefGoogle Scholar
  8. [8]
    Wu X., Song Y., Yan X., Zhu C., Ma Y., Du D., Lin Y., Biosens. Bioelectron., 2017, 94, 292CrossRefGoogle Scholar
  9. [9]
    Cao X., Ma J., Lin Y., Yao B., Li F., Weng W., Lin X., Spectrochim. Acta A, 2015, 151, 875CrossRefGoogle Scholar
  10. [10]
    Zhan Y., Zu H. R., Huang D., Liu Y. L., Hu C. F., Chem. J. Chinese Universities, 2017, 38(9), 1556Google Scholar
  11. [11]
    Cai N., Tan L., Li Y., Xia T., Hu T., Su X., Anal. Chim. Acta, 2017, 965, 96CrossRefGoogle Scholar
  12. [12]
    Hu T., Zhang L., Wen W., Zhang X., Wang S., Biosens. Bioelectron., 2016, 77, 451CrossRefGoogle Scholar
  13. [13]
    Niu W. J., Li Y., Zhu R. H., Shan D., Fan Y. R., Zhang X. J., Sensors Actuators B: Chem., 2015, 218, 229CrossRefGoogle Scholar
  14. [14]
    Zhuo Y., Miao H., Zhong D., Zhu S., Yang X., Mater. Lett., 2015, 139, 197CrossRefGoogle Scholar
  15. [15]
    Wang N., Fan H., Sun J., Han Z., Dong J., Ai S., Carbon, 2016, 109, 141CrossRefGoogle Scholar
  16. [16]
    Wang J., Li Q., Zhou J., Wang Y., Yu L., Peng H., Zhu J., Opt. Mater., 2017, 72, 15CrossRefGoogle Scholar
  17. [17]
    Liu H., Na W., Liu Z., Chen X., Su X., Biosens. Bioelectron., 2017, 92, 229CrossRefGoogle Scholar
  18. [18]
    Pan J., Zheng Z., Yang J., Wu Y., Lu F., Chen Y., Gao W., Talanta, 2017, 166, 1CrossRefGoogle Scholar
  19. [19]
    Liu P., Zhang C., Liu X., Cui P., Appl. Surf. Sci., 2016, 368, 122CrossRefGoogle Scholar
  20. [20]
    Ke J., Li X., Zhao Q., Liu B., Liu S., Wang S., J. Colloid Interface Sci., 2017, 496, 425CrossRefGoogle Scholar
  21. [21]
    Li H., He X., Liu Y., Huang H., Lian S., Lee S. T., Kang Z., Carbon, 2011, 49, 605CrossRefGoogle Scholar
  22. [22]
    Liang Q., Ma W., Shi Y., Li Z., Yang X., Carbon, 2013, 60, 421CrossRefGoogle Scholar
  23. [23]
    Yuan Y., Zhao X., Qiao M., Zhu J., Liu S., Yang J., Hu X., Spectro-chim. Acta A, 2016, 167, 106CrossRefGoogle Scholar
  24. [24]
    Grabolle M., Spieles M., Lesnyak V., Gaponik N., Eychmuller A., Genger U. R., Anal. Chem., 2009, 81, 6285CrossRefGoogle Scholar
  25. [25]
    Dong Y., Shao J., Chen C., Li H., Wang R., Chi Y., Lin X., Chen G., Carbon, 2012, 50, 4738CrossRefGoogle Scholar
  26. [26]
    Khakbaz F., Mahani M., Anal. Biochem., 2017, 523, 32CrossRefGoogle Scholar
  27. [27]
    Ju E., Li Z., Du Y., Tao Y., Ren J., Qu X., ACS Nano, 2014, 8, 6014CrossRefGoogle Scholar
  28. [28]
    Chen Y., Rosenzweig Z., Anal. Chem., 2002, 74, 5132CrossRefGoogle Scholar
  29. [29]
    Hao C., Xu G., Feng Y., Lu L., Sun W., Sun R., Spectrochim. Acta A, 2017, 184, 191CrossRefGoogle Scholar
  30. [30]
    Lim H. S., Choi J. C., Song S. B., Kim M., Food Chem., 2014, 158, 521CrossRefGoogle Scholar
  31. [31]
    Li Q., Yang J. D., Tan X. P., Zhan Z., Hu X. M., Yang M. H., Lumi-nescence, 2016, 31, 1152Google Scholar
  32. [32]
    Alghamdi A. H., Alshammery H. M., Abdalla M. A., J. Aoac Int., 2009, 92, 1454Google Scholar
  33. [33]
    Yilmaz U. T., Ergun F., Yilmaz H., J. Food Drug Anal., 2014, 22, 329CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Anmei Su
    • 1
  • Di Wang
    • 1
  • Xin Shu
    • 1
  • Qingmei Zhong
    • 1
  • Yongren Chen
    • 1
  • Jiachen Liu
    • 1
  • Yilin Wang
    • 1
  1. 1.Guangxi Key Laboratory of Biorefinery, School of Chemistry and Chemical EngineeringGuangxi UniversityNanningP. R. China

Personalised recommendations