Advertisement

Chemical Research in Chinese Universities

, Volume 34, Issue 3, pp 480–484 | Cite as

Removal of Low-concentration Ammonia from Ambient Air by Aluminophosphates

  • Chunyang Li
  • Shujie Wu
  • Guiyang Yu
  • Xuwei Yang
  • Gang Liu
  • Wenxiang Zhang
Article
  • 25 Downloads

Abstract

A series of aluminumphosphate materials was prepared and used as adsorbents for the removal of ammonia at low concentrations. The influence of various preparation parameters, including the pH value of sol, calcination temperature and molar ratio of P/Al, on the structure and surface properties as well as adsorption capacity were investigated. The results showed that large amount of P—OH present on the surface of aluminophosphates was suitable for the removal of ammonia. They were the major source of weak Brönsted acid sites and acted as the main active centers for capturing ammonia.

Keywords

Ammonia adsorption Aluminophosphate Air purification Weak acid Porous material 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Yin S. F., Xu B. Q., Zhou X. P., Au C. T., Appl. Catal. A, 2004, 277(1/2), 1CrossRefGoogle Scholar
  2. [2]
    Yan T., Li T. X., Wang R. Z., Jia R., Appl. Therm. Eng. 2015, 77, 20CrossRefGoogle Scholar
  3. [3]
    Yan T., Li T. X., Li H., Wang R. Z., Int. J. Refrig., 2014, 46, 168CrossRefGoogle Scholar
  4. [4]
    Rodrigues C. C., de Moraes D. Jr., da Nobrega S. W., Barboza M. G., Bioresour. Technol. 2007, 98(4), 886CrossRefGoogle Scholar
  5. [5]
    Petit C., Karwacki C., Peterson G., Bandosz T. J., J. Phys. Chem. C, 2007, 111(34), 12705CrossRefGoogle Scholar
  6. [6]
    Zhang F., Tian G., Wang H. M., Wang H. C., Zhang C., Cui Y. T., Huang J. Y., Shu Y., Chem. Res. Chinese Universities 2016, 32(3), 461CrossRefGoogle Scholar
  7. [7]
    Seitz H., Germán E., Juan A., Irigoyen B., Appl. Surf. Sci. 2012, 258(8), 3617CrossRefGoogle Scholar
  8. [8]
    Qajar A., Peer M., Andalibi M. R., Rajagopalan R., Foley H. C., Micropor. Mesopor. Mater. 2015, 218, 15CrossRefGoogle Scholar
  9. [9]
    Kim B. J., Park S. J., J. Colloid Interface Sci., 2007, 311(1), 311CrossRefGoogle Scholar
  10. [10]
    Huang C. C., Li H. S., Chen C. H., J. Hazard. Mater., 2008, 159(2/3), 523CrossRefGoogle Scholar
  11. [11]
    Li C. Y., Geng L. L., Yang X. W., Wu S. J., Zhang W. X., Liu G., Acta Phys.-Chim. Sin. 2016, 32(10), 2599Google Scholar
  12. [12]
    Solomon S. J., Schade G. W., Kuttippurath J., Ladstätter-Weissen-mayer A., Burrows J. P., Indoor Built Environ. 2008, 17(3), 260CrossRefGoogle Scholar
  13. [13]
    Saha D., Deng S., J. Colloid Interface Sci., 2010, 348(2), 615CrossRefGoogle Scholar
  14. [14]
    Lindgren T., Build. Sci. 2010, 45(3), 596Google Scholar
  15. [15]
    Wu H. M., Ma J. Z., Li Y. B., Zhang C. B., He H., Appl. Catal. B, 2014, 152/153, 82CrossRefGoogle Scholar
  16. [16]
    Zhang L., Zhang C. B., He H., J. Catal., 2009, 261, 101CrossRefGoogle Scholar
  17. [17]
    Wu H. M., Ma J. Z., Zhang C. B., He H., J. Environ. Sci., 2014, 26, 673CrossRefGoogle Scholar
  18. [18]
    Sharma M., Vyas R. K., Singh K., Adsorption 2013, 19(1), 161CrossRefGoogle Scholar
  19. [19]
    Takahashi A., Tanaka H., Parajuli D., Nakamura T., Minami K., Sugiyama Y., Hakuta Y., Ohkoshi S., Kawamoto T., J. Am. Chem. Soc., 2016, 138(20), 6376CrossRefGoogle Scholar
  20. [20]
    Kang S., Chun J., Park N., Lee S. M., Kim H. J., Son S. U., Chem. Commun. 2015, 51(59), 11814CrossRefGoogle Scholar
  21. [21]
    Mounfield W. P., Taborga Claure M., Agrawal P. K., Jones C. W., Walton K. S., Ind. Eng. Chem. Res. 2016, 55(22), 6492Google Scholar
  22. [22]
    Gonçalves M., Sánchez-García L., Oliveira Jardim E. D., Silvestre-Albero J., Rodríguez-Reinoso F., Environ. Sci. Technol., 2011, 45(24), 10605CrossRefGoogle Scholar
  23. [23]
    Wang A., Xu J., Wang C., Deng F., Xu R., Yan W. F., Chem. Res. Chinese Universities 2017, 33(4), 513CrossRefGoogle Scholar
  24. [24]
    Wang A., Sun Y. Y., Xu R., Yan W. F., Chem. Res. Chinese Universi-ties 2017, 33(6), 853CrossRefGoogle Scholar
  25. [25]
    Bandosz T. J., Petit C., J. Colloid Interface Sci. 2009, 338(2), 329CrossRefGoogle Scholar
  26. [26]
    Corma A., Chem. Rev. 1997, 97(6), 2373CrossRefGoogle Scholar
  27. [27]
    Yang C., Wang Y. M., Jiang L. H., Acta Petrolei Sinica 2016, 32(4), 841Google Scholar
  28. [28]
    Zhu X., Li X., Jia M., Liu G., Zhang W., Jiang D., Appl. Catal. A, 2005, 282(1/2), 155CrossRefGoogle Scholar
  29. [29]
    Lu J. M., Ranjit K. T., Rungrojchaipan P., Kevan L., J. Phys. Chem. B, 2005, 109(19), 9284CrossRefGoogle Scholar
  30. [30]
    Liu G., Wang Z., Jia M., Zou X., Zhu X., Zhang W., Jiang D., J. Phys. Chem. B, 2006, 110(34), 16953CrossRefGoogle Scholar
  31. [31]
    Liu G., Li, X. M. Zhu X. M., Jia M. J., Wu S. J., Zhang W. X., Jiang D. Z., Chem. J. Chinese Universities, 2005, 26(8), 1492Google Scholar
  32. [32]
    Liu G., Jia M., Zhou Z., Wang L., Zhang W., Jiang D., J. Colloid In-terface Sci., 2006, 302(1), 278CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Chunyang Li
    • 1
  • Shujie Wu
    • 1
  • Guiyang Yu
    • 1
  • Xuwei Yang
    • 1
  • Gang Liu
    • 1
  • Wenxiang Zhang
    • 1
  1. 1.Key Laboratory of Surface and Interface Chemistry of Jilin Province, College of ChemistryJilin UniversityChangchunP. R. China

Personalised recommendations