Chemical Research in Chinese Universities

, Volume 34, Issue 3, pp 397–407 | Cite as

Interference Adsorption Mechanisms of Dimethoate, Metalaxyl, Atrazine, Malathion and Prometryn in a Sediment System Containing Coexisting Pesticides/Heavy Metals Based on Fractional Factor Design(Resolution V) Assisted by 2D-QSAR

  • Xiaolei Wang
  • Qing Li
  • Minghao Li
  • Yu Li


The mechanisms of adsorption of pesticides(dimethoate, metalaxyl, atrazine, malathion and prometryn) and heavy metals(Cu, Cd, Pb, Zn and Ni) coexisting in sediments, with pesticides as target pollutants, and the influence of their main effects and double-order interaction effects were studied using the experimental design module in the Minitab software package with a 210‒3 fractional factorial design method at resolution V. The main, double-order interaction, synergistic and antagonistic effect values of pollutant concentrations influencing the adsorption of pesticides were set as dependent variables, while various quantum chemical parameters of pesticides were set as independent variables, and two-dimensional quantitative structure activity relationship(2D-QSAR) models were established by stepwise regression to reveal the adsorption mechanisms of pesticides in a composite contamination system. The main effects of pollutants concentration played the primary role in the adsorption of dimethoate and malathion(the rates of contributions were 53.54% and 56.46%, respectively), while double-order interaction effects were primarily responsible for metalaxyl, atrazine and prometryn adsorption(the rates of contributions were 79.05%, 60.21% and 57.89%, respectively) in the pesticide/heavy metals coexisting sediment system. The synergistic effects of the main effects and double-order interaction effects of pollutants concentration(synergistic effects) played a leading role in adsorption of malathion and prometryn(the rates of contributions were 70.61% and 69.61%, respectively), while antagonistic effects of the main effects and double-order interaction effects of pollutants(antagonistic effects) played a dominant role in the adsorption of dimethoate, metalaxyl and atrazine(the rates of contributions were 58.82%, 56.89% and 58.24%, respectively). Moreover, the correlation coefficient value(R2) ranged from 0.986 to 0.999(>0.8783) in the 2D-QSAR model, while the standard deviation(SD) ranged from 0.006 to 0.066 and the F test values were 22.684―199.544, indicating the model has good predictive ability and fit. The 2D-QSAR model revealed a significant correlation(P=0.05) between the main effects of pollutants concentrations on pesticides adsorption(main effect values) and the most positive hydrogen atomic charge(\(q_{H^+}\)), the highest occupied molecular orbital energy(EHOMO) and the dipole moment(μ). Furthermore, double-order interaction effect values of pollutant concentrations influenced the adsorption of pesticides(double-order interaction effect values), and the most positive atomic charge(q+), \(q_{H^+}\), and the lowest occupied molecular orbital energy(ELUMO) were significantly correlated. The qH+, ELUMO and μ of pesticides were found to be significant factors promoting pesticides adsorption, while the q+ and ELUMO of pesticides were significant inhibiting factors(P=0.05). Overall, this study provides a theoretical basis for further realization of combined pollution control of pesticide pollutants in complex environmental systems.


Pesticide 2D-QSAR Heavy metal Mechanism of combined pollution Fractional factorial design 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Gao J. P., Maguhn J., Spitzauer P., Kettrup., Water Res. 1998, 32(7), 2089CrossRefGoogle Scholar
  2. [2]
    Biradar D. P., Rayburn A. L., J. Environ. Qual., 1995, 24(6), 1222CrossRefGoogle Scholar
  3. [3]
    Tao Q., Tang H., Chemosphere 2004, 56(1), 31CrossRefGoogle Scholar
  4. [4]
    Huang Y., Li Z. Y., Zhao B. S., J. Environ. Sci. Manag., 2009, 34(4), 20Google Scholar
  5. [5]
    Li Q. Q., Zhu Y. W., Xiong M. Y., Duan J., Wu L. J., Li C. Z., Min S. G., Spectrosc. Spect. Anal. 2010, 30(12), 3395Google Scholar
  6. [6]
    Shi D. R., Zhang L. D., Ren L. P., Yu J. L., Tian X., J. Agro-Environ. Sci., 2006, 25(4), 988Google Scholar
  7. [7]
    Tao Q. H., Tang H. X., Acta Sci. Circum. 2004, 24(4), 696Google Scholar
  8. [8]
    Evgenidou E., Bizani E., Christophoridis C., Fytianos K., Chemos-phere 2007, 68(10), 1877CrossRefGoogle Scholar
  9. [9]
    Wang L., Zhang C., Zhong M. J., Qian P., Chem. J. Chinese Univer-sities, 2015, 36(7), 1358Google Scholar
  10. [10]
    Li Y., Wang A., Gao Q., Wang X. L., Chem. Res. Chinese Universi-ties 2009, 25(1), 31Google Scholar
  11. [11]
    Jantunen A. P. K., Tuikka A., Akkanen J., Kukkonen J. V. K., Ecotox. Environ. Safe. 2008, 71(3), 860CrossRefGoogle Scholar
  12. [12]
    Wang X., Wang C. R., Zhang L. L., Wu X. S., Wang D. Y., Cai X. D., J. Southwest Univ. Sci. Technol., 2014, 29(3), 40Google Scholar
  13. [13]
    Gorzerino C., Quemeneur A., Hillenweck A., Baradat M., Delous G., Ollitrault M., Azam D., Caquet T., Lagadic L., Ecotox. Environ. Safe. 2009, 72(3), 802CrossRefGoogle Scholar
  14. [14]
    Fei Y., Yan X. L., Liao X. Y., Li Y. H., Lin L. Y., Shan T. Y., Acta Sci. Circum. 2016, 36(11), 4164Google Scholar
  15. [15]
    Li H., Zhang H. L., Dong Y. B., Tan Y., Chen S., Liu L. L., Res. En-viron. Sci. 2016, 29(8), 1154Google Scholar
  16. [16]
    Fan P., Yang J. C., Deng S. H., Jiang H. M., Zhang J. F., Li L. L., Shen F., J. Agro-Environ. Sci., 2011, 30(10), 1925Google Scholar
  17. [17]
    Wang X. H., Yang H. J., Yan B. H., Tang M. Z., Luo L., Hunan Agric. Sci. 2011, 1, 85Google Scholar
  18. [18]
    Weng H. X., Zhu Y. M., Qin Y. C., Chen J. Y., Chen X. H., J. Asian Earth Sci., 2008, 31, 522CrossRefGoogle Scholar
  19. [19]
    Gao J. P., Maguhn J., Spitzauer P., Kettrup A., Water Res. 1998, 32(5), 1662CrossRefGoogle Scholar
  20. [20]
    Cheng W. W., Kang C. L., Wang T. T., Li Y. M., Chem. Res. Chinese Universities. 2011, 27(3), 402Google Scholar
  21. [21]
    Li Y. Q., Jiang H., Lv C. W., Fan M. D., Wang W., Zhang R. Q., Xie Z. L., Wang J. H., Yu B., En H., Ding T., Environ. Sci. 2016, 37(3), 1008Google Scholar
  22. [22]
    Zhang Y. L., Shi X. C., Zhang R. L., Sichuan Environ. 2002, 21(2), 13Google Scholar
  23. [23]
    Qian Z., Sun J., Tie B. Q., Mao X. Q., Zhan L. Z., Chin. J. Eco-Agric., 2006, 14(3), 135Google Scholar
  24. [24]
    Liu B. G., Liu J. W., Li J. Q., Geng S., Mo H. Z., Liang G. Z., Chem. J. Chinese Universities, 2017, 38(1), 41Google Scholar
  25. [25]
    Wang M. Y., Ma Y., Wang H. Y., Cao G., Li Z. M., Chem. J. Chinese Universities, 2016, 37(9), 1636Google Scholar
  26. [26]
    Chen Y., Cai X. Y., Jiang L., Li Y., Ecotox. Environ. Safe. 2015, 124, 202CrossRefGoogle Scholar
  27. [27]
    Dong D. M., Nelson Y. M., Lion L. W., Water Res. 2000, 34(2), 427CrossRefGoogle Scholar
  28. [28]
    Ma R. C., Gao Z. T., Chen B. C., Zhao W. J., Wang M., Li Y., Sci. Techn. Eng. 2004, 20(14), 144Google Scholar
  29. [29]
    Gu W. W., Cheng B. C., Li Y., Pol. J. Environ. Stud., 2017, 26(1), 47CrossRefGoogle Scholar
  30. [30]
    Bailey G. W., White J. L., J. Agr. Food Chem., 1964, 12(4), 324CrossRefGoogle Scholar
  31. [31]
    Senesi N., Sci. Total Environ. 1992, 123, 63CrossRefGoogle Scholar
  32. [32]
    Hayes M. H. B., Pick M. E., Toms B. A., et al., Residue Rev. 1975, 57(1), 25Google Scholar
  33. [33]
    Anderson R. B., J. Am. Chem. Soc., 1956, 68, 686CrossRefGoogle Scholar
  34. [34]
    Yang C. W., Wang Q. Q., Liu W. P., Environ. Sci. 2002, 21(4), 94Google Scholar
  35. [35]
    Long J. J., Zhang M. Q., Zhang X., Comput. Appl. Chem. 2005, 22(10), 883Google Scholar
  36. [36]
    Luo Y. F., Huang J., Yu G., Comput. Appl. Chem. 2009, 26(6), 773Google Scholar
  37. [37]
    Pei H. P., Xu G. J., J. Zhejiang Univ-Sci., 2003, 30(3), 310Google Scholar
  38. [38]
    Jiang L., Wen J. Y., Zeng Y. L., Li Y., Asian J. Chem., 2014, 26(22), 575CrossRefGoogle Scholar
  39. [39]
    Yao S. W., Lopes V. H. C., Fernández F, Garcia-Mera X., Morales M., Rodriguez-Borges J. E., Cordeiro M. N. D. S., Bioorg. Med. Chem. 2003, 11(23), 4999CrossRefGoogle Scholar
  40. [40]
    Li G. D., Peng F., Chen L. M., Chen J. C., Zheng K. C., Chem. Res. Appl. 2015, 2, 113Google Scholar
  41. [41]
    Kaliszan R., J. Chromatogr. A, 1993, 656(1/2), 417CrossRefGoogle Scholar
  42. [42]
    Tao Q. H., Tang H. X., Chemosphere 2004, 56, 31CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Resources and Evironmental Systems Optimization, Ministry of Education, College of Environmental Science and EngineeringNorth China Electric Power UniversityBeijingP. R. China

Personalised recommendations