Chemical Research in Chinese Universities

, Volume 34, Issue 2, pp 169–174 | Cite as

Design of Cr2O3@ZnO Hetero-junction Hierarchical Nanostructures with Enhanced Xylene-sensing Properties

  • Qixuan Qin
  • Zheng Shen
  • Nan Zhang
  • Xindong Zhang


Cr2O3@ZnO hetero-junction hierarchical nanostructures were designed to be enhanced xylene sensing material, and thereinto, flower-like ZnO hierarchical nanostructures were synthesized via a solution-based method, and then Cr2O3 particles were developed on the surface of ZnO petals via a solvothermal method. From the results of XRD patterns, SEM and TEM images, it can be observed that ZnO has a high-quallity crystallinity and Cr2O3 particles scatter uniformly on the suruface of ZnO. The products with different ratios of Cr2O3 were used to fabricate gas sensors, and the result indicates that the hetero-junction structures prompt the response to xylene, and the reason may be attributed to the decrease of main carriers concentration caused by the p-n junction between ZnO(n-type semiconductor) and Cr2O3(p-type semiconductor), as well as the catalytic oxidation effect on methyl groups of the xylene by Cr2O3.


ZnO Hetero-junction Xylene 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Qu F., Feng C., Li C., Li W., Wen S., Ruan S., Zhang H., IJACT, 2014, 11, 619Google Scholar
  2. [2]
    Lin Y., Wei W., Li Y., Li F., Zhou J., Sun D., Chen Y., Ruan S., J. Alloys Comp., 2015, 651, 690CrossRefGoogle Scholar
  3. [3]
    Liu J., Guo W., Qu F., Feng C., Li C., Zhu L., Zhou J., Ruan S., Chen W., Ceramics International, 2014, 40, 6685CrossRefGoogle Scholar
  4. [4]
    Wang S., Wang Y., Zhang H., Gao X., Yang J., Wang Y., RSC Adv., 2014, 4, 30840CrossRefGoogle Scholar
  5. [5]
    Li F., Li Y., Jing F., Zhou J., Chen Y., Sun D., Ruan S., RSC Adv., 2015, 5, 85598CrossRefGoogle Scholar
  6. [6]
    Zhao C., Fu J., Zhang Z., Xie E., RSC Adv., 2013, 3, 4018CrossRefGoogle Scholar
  7. [7]
    Deng S., Liu X., Chen N., Deng D., Xiao X., Wang Y., Sens. Actua-tors B: Chem., 2016, 233, 615CrossRefGoogle Scholar
  8. [8]
    Lee J. H., Sens. Actuators B: Chem., 2009, 140, 319CrossRefGoogle Scholar
  9. [9]
    Feng J. J., Liao Q. C., Wang A. J., Chen J. R., Cryst. Eng. Comm., 2011, 13, 4202CrossRefGoogle Scholar
  10. [10]
    Bhirud A., Sathaye S., Waichal R., Park C. J., Kale B., J. Mater. Chem. A, 2015, 3, 17050CrossRefGoogle Scholar
  11. [11]
    Wu D., Gao Z., Xu F., Shi Z., Tao W., Jiang K., Cryst. Eng. Comm., 2012, 14, 7934CrossRefGoogle Scholar
  12. [12]
    Liang Z., Zhang Q., Jiang L., Cao G., Energy Environ. Sci., 2015, 8, 3442CrossRefGoogle Scholar
  13. [13]
    Maiti S., Pal S., Chattopadhyay K. K., Cryst. Eng. Comm., 2015, 17, 9264CrossRefGoogle Scholar
  14. [14]
    Zhu L., Gu X., Qu F., Zhang J., Feng C., Zhou J., Ruan S., Kang B., Gou P., J. Am. Chem. Soc., 2013, 96(10), 3183Google Scholar
  15. [15]
    Li C., Lin Y., Li F., Zhu L., Sun D., Shen L., Chen Y., Ruan S., RSC Adv., 2015, 5, 80561CrossRefGoogle Scholar
  16. [16]
    Tian S., Zhang Y., Zeng D., Wang H., Li N., Xie C., Pan C., Zhao X., Phys. Chem. Chem. Phys., 2015, 17, 27437CrossRefGoogle Scholar
  17. [17]
    Woo H. S., Kwak C. H., Chung J. H., Lee J. H., ACS Applied Mate-rials & Interfaces, 2014, 6, 22553CrossRefGoogle Scholar
  18. [18]
    Wang F., Li W., Hou M., Li C., Wang Y., Xia Y., J. Mater. Chem. A, 2015, 3, 1703CrossRefGoogle Scholar
  19. [19]
    Hao W., Chen S., Cai Y., Zhang L., Li Z., Zhang S., J. Mater. Chem. A, 2014, 2, 13801CrossRefGoogle Scholar
  20. [20]
    Hu Z., Xu M., Shen Z., Yu J., J. Mater. Chem. A, 2015, 3, 14046CrossRefGoogle Scholar
  21. [21]
    Amrute A. P., Mondelli C., Pérez-Ramírez J., Catalysis Science & Technology, 2012, 2, 2057CrossRefGoogle Scholar
  22. [22]
    Ye X., Hua W., Yue Y., Dai W., Miao C., Xie Z., Gao Z., New Journal of Chemistry, 2004, 28, 373CrossRefGoogle Scholar
  23. [23]
    Tamiolakis I., Lykakis I. N., Katsoulidis A. P., Malliakas C. D., Armatas G. S., J. Mater. Chem., 2012, 22, 6919CrossRefGoogle Scholar
  24. [24]
    Wang S., Li Z., Wang P., Xiao C., Zhao R., Xiao B., Yang T., Zhang M., Cryst. Eng. Comm., 2014, 16, 5716CrossRefGoogle Scholar
  25. [25]
    Qu F., Wang Y., Liu J., Wen S., Chen Y., Ruan S., Materials Letters, 2014, 132, 167CrossRefGoogle Scholar
  26. [26]
    Kim H. J., Yoon J. W., Choi K. I., Jang H. W., Umar A., Lee J. H., Nanoscale, 2013, 5, 7066CrossRefGoogle Scholar
  27. [27]
    Ramasamy P., Kim J., Materials Letters, 2013, 93, 52CrossRefGoogle Scholar
  28. [28]
    Cao J., Xu Y., Sui L., Zhang X., Gao S., Cheng X., Zhao H., Huo L., Sens. Actuators B: Chem., 2015, 220, 910CrossRefGoogle Scholar
  29. [29]
    Desimoni E., Surface and Interface Analysis, 1988, 13, 173CrossRefGoogle Scholar
  30. [30]
    Mischler S., Mathieu H. J., Landolt D., Surface and Interface Analy-sis, 1988, 11, 182CrossRefGoogle Scholar
  31. [31]
    Wang Y., Jiang D., Wei W., Zhu L., Shen L., Wen S., Ruan S., RSC Adv., 2015, 5, 50336CrossRefGoogle Scholar
  32. [32]
    Lim S. K., Hwang S. H., Chang D., Kim S., Sens. Actuators B: Chem., 2010, 149, 28CrossRefGoogle Scholar
  33. [33]
    Li C., Feng C., Qu F., Liu J., Zhu L., Lin Y., Wang Y., Li F., Zhou J., Ruan S., Sens. Actuators B: Chem., 2015, 207, 90CrossRefGoogle Scholar
  34. [34]
    Qu F., Jiang H., Yang M., Nanoscale, 2016, 8 16349CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Qixuan Qin
    • 1
  • Zheng Shen
    • 1
  • Nan Zhang
    • 1
  • Xindong Zhang
    • 1
  1. 1.State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and EngineeringJilin UniversityChangchunP. R. China

Personalised recommendations