Chemical Research in Chinese Universities

, Volume 34, Issue 3, pp 490–494 | Cite as

Facile Route to Enzyme Immobilization: Gloucose Oxidase Entrapped in Titania Under Mild Environmental Conditions and Consequent Electrochemical Sensor Response

  • Zhihui Yu
  • Dandan Liu
  • Yunqiao Li


A facile one-step method of immobilization of the combination of glucose oxidase(GOD) and catalase(CAT) in mesostructured TiO2 was proposed. Results obtained by transmission electron microspectroscopy and nitrogen adsorption-desorption analysis clearly show that the TiO2 mediated by the combination of GOD and CAT(CGC) has a large surface area and a narrow pore-size distribution. The CGC immobilized on mesostructured TiO2 exhibits direct electrochemistry and good electrocatalytic performance without any electron mediator.


Direct electrochemistry Glucose oxidase Immobilization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Huang H. P., Yue Y. F., Xu L., LÜ L. L., Hu Y. M., Chem. J. Chinese Universities, 2017, 38(4), 554Google Scholar
  2. [2]
    Pan S., Li Z. H., Chen Y., Zhao X. L., Chen C., Zhu Z. G., Chem. J. Chinese Universities, 2017, 38(7), 1163Google Scholar
  3. [3]
    Shan C. S., Yang H. F., Song J. F., Han D. X., Ivaska A., Niu L., Anal. Chem., 2009, 81(6), 2378CrossRefGoogle Scholar
  4. [4]
    Xu L., Lin Y. Q., Chen X., Lu Y. L., Yang W. S., Chem. J. Chinese Universities, 2016, 37(3), 442Google Scholar
  5. [5]
    Deng S. Y., Jian G. Q., Lei J. P., Hu Z., Ju H. X., Biosensors and Bioelectronics, 2009, 25(2), 373CrossRefGoogle Scholar
  6. [6]
    Ke B. B., Wan L. S., Huang X. J., Xu Z. K., Chem. Res. Chinese Universities, 2011, 27(2), 339Google Scholar
  7. [7]
    Ansari S. A., Husain Q., Biotechnol. Adv., 2012, 30(3), 512CrossRefGoogle Scholar
  8. [8]
    Sharma R., Sinha R. K., Agrawal V. V., Electroanal., 2014, 26(7), 1551CrossRefGoogle Scholar
  9. [9]
    Lopez R. J., Babanova S., Artyushkova K., Atanassov P., Bioelectrochemistry, 2015, 105, 78CrossRefGoogle Scholar
  10. [10]
    Karim M. R., Ikeda Y., Ide T., Sugimoto S., Toda K., Kitamura Y., Ihara T., Matsui T., Taniguchi T., Koinuma M., Matsumoto Y., Hayami S., New J. Chem., 2014, 38, 2120CrossRefGoogle Scholar
  11. [11]
    Cipolatti E. P., Silva M. J. A., Klein M., Feddern V., Feltes M. M. C., Oliveira J. V., Ninow J. L., de Oliveira D., J. Mol. Catal. B: Enzym., 2014, 99, 56CrossRefGoogle Scholar
  12. [12]
    Hung B. Y., Kuthati Y., Kankala R. K., Kankala S., Deng J. P., Liu C. L., Lee C. H., Nanomaterials, 2015, 5(4), 2169CrossRefGoogle Scholar
  13. [13]
    Nadzhafova O., Etienne M., Walcarius A., Electrochem. Commun., 2007, 9(5), 1189CrossRefGoogle Scholar
  14. [14]
    Ha W., Song X. Y., Chen J., Shi Y. P., Nanoscale, 2015, 7, 18619CrossRefGoogle Scholar
  15. [15]
    Ivnitski D., Artyushkova K., Rincón R. A., Atanassov P., Luckarift H. R., Johnson G. R., Small, 2008, 4(3), 357CrossRefGoogle Scholar
  16. [16]
    Naik R. R., Tomczak M. M., Luckarift H. R., Spain J. C., Stone M. O., Chem. Commun., 2004, (15), 1684Google Scholar
  17. [17]
    Yin X. B., Wu Y., Mimura H., Niibori Y., Wei Y. Z., Sci. China Chem., 2014, 57(11), 1470CrossRefGoogle Scholar
  18. [18]
    Topoglidis E., Campbell C. J., Cass A. E. G., Durrant J. R., Langmuir, 2001, 17(25), 7899CrossRefGoogle Scholar
  19. [19]
    Hartmann M., Kostrov X., Chem. Soc. Rev., 2013, 42, 6277CrossRefGoogle Scholar
  20. [20]
    Wang L. L., Qiao J., Qi L., Xu X. Z., Li D., Sci. China Chem. 2015, 58(9), 1508CrossRefGoogle Scholar
  21. [21]
    Wang P., Dai S., Waezsada S. D., Tsao A. Y., Davison B. H., Bio-technol. Bioeng., 2001,74(3), 249CrossRefGoogle Scholar
  22. [22]
    Patil B., Fujikawa S., Okajima T., Ohsaka T., Int. J. Electrochem. Sci., 2012, 7, 5012Google Scholar
  23. [23]
    Sheldon R. A., Appl. Microbiol. Biotechnol. 2011, 92(3), 467CrossRefGoogle Scholar
  24. [24]
    Wang A. M., Du F. C., Wang F., Shen Y. Q., Gao W. F., Zhang P. F., Biochem. Eng. J. 2013, 73, 86CrossRefGoogle Scholar
  25. [25]
    Yang J., Zhang R. Y., Xu Y., He P. G., Fang Y. Z., Electrochem. Commun. 2008, 10(12), 1889CrossRefGoogle Scholar
  26. [26]
    Kim J., Jia H. F., Wang P., Biotechnol. Adv. 2006, 24(3), 296CrossRefGoogle Scholar
  27. [27]
    Braun S., Rappoport S., Zusman R., Avnir D., Ottolenghi M., Mater. Lett., 1990, 10(1/2), 1CrossRefGoogle Scholar
  28. [28]
    Blin J. L., Gérardin C., Carteret C., Rodehueser L., Selve C., Stébé M. J., Chem. Mater. 2005, 17(6), 1479CrossRefGoogle Scholar
  29. [29]
    Zhu Y. H., Cao H. M., Tang L. H., Yang X. L., Li C. Z., Electrochi-mica Acta 2009, 54(10), 2823CrossRefGoogle Scholar
  30. [30]
    Xiao P., Garcia B. B., Guo Q., Liu D. W., Cao G. Z., Electrochem. Commun. 2007, 9(9), 2441CrossRefGoogle Scholar
  31. [31]
    Bavykin D. V., Milsom E. V., Marken F., Kim D. H., Marsh D. H., Riley D. J., Walsh F. C., El-Abiary K. H., Lapkin A. A., Electrochem. Commun. 2005, 7(10), 1050CrossRefGoogle Scholar
  32. [32]
    Cao H. M., Zhu Y. H., Tang L. H., Yang X. L., Li C. Z., Electroanal. 2008, 20(20), 2223CrossRefGoogle Scholar
  33. [33]
    Chen G., Li M., Li F., Sun S. R., Xia D. G., Adv. Mater. 2010, 22(11), 1258CrossRefGoogle Scholar
  34. [34]
    Venkatathri N., Srivastava R., Yun D. S., Yoo J. W., Microporous Mesoporous Mater., 2008, 112(1―3), 147CrossRefGoogle Scholar
  35. [35]
    Antonelli D. M., Microporous Mesoporous Mater., 1999, 30(2/3), 315CrossRefGoogle Scholar
  36. [36]
    Ballarin B., Facchini M., Pozzo L. D., Martini C., Electrochem. Commun. 2003, 5(8), 625CrossRefGoogle Scholar
  37. [37]
    Vinu A., Miyahara M., Ariga K., J. Phys. Chem. B, 2005, 109(13), 6436CrossRefGoogle Scholar
  38. [38]
    Wu S., Ju H. X., Liu Y., Adv. Funct. Mater. 2007, 17(4), 585CrossRefGoogle Scholar
  39. [39]
    Laviron E., J. Electroanal. Chem. Interf. Electrochem., 1979, 101(1), 19CrossRefGoogle Scholar
  40. [40]
    Cai C. X., Chen J., Anal. Biochem. 2004, 332(1), 75CrossRefGoogle Scholar
  41. [41]
    Liu J. Q., Chou A., Rahmat W., Paddon-Row M. N., Gooding J. J., Electroanal. 2005, 17(1), 38CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Beijing on Regional Air Pollution Control, College of Environmental and Energy EngineeringBeijing University of TechnologyBeijingP. R. China
  2. 2.National Institute of MetrologyBeijingP. R. China

Personalised recommendations