Advertisement

Chemical Research in Chinese Universities

, Volume 34, Issue 2, pp 290–295 | Cite as

Facile Synthesis of C3N4/Ag Composite Nanosheets as SERS Substrate for Monitoring the Catalytic Degradation of Methylene Blue

  • Tianjia Bu
  • Xiaowei Ma
  • Bing Zhao
  • Wei Song
Article

Abstract

The C3N4/Ag composite nanosheets were facilely prepared via an in situ reduction process and Ag nanoparticles were well dispersed on the surface of C3N4 nanosheets. The unique two-dimensional structure and strong interactions between C3N4 nanosheets and Ag nanoparticles contributed the good surface-enhanced Raman scattering(SERS) property due to the electromagnetic field enhancement. In addition, the as-prepared C3N4/Ag composite nanosheets could be used as catalysts or photocatalyst for the degradation of methylene blue(MB) in the presence of NaBH4 or under visible light. Therefore, a facile SERS monitoring of the catalytic and photocatalytic degradation process of MB and the determination of the reaction kinetics were developed.

Keywords

C3N4 nanosheets Ag nanoparticles Composite Surface-enhanced Raman scattering Catalytic and photo-catalytic degradation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Rosi N. L., Mirkin C. A., Chem. Rev., 2005, 105(4), 1547CrossRefGoogle Scholar
  2. [2]
    Qian X., Nie S., Chem. Soc. Rev., 2008, 37(5), 912CrossRefGoogle Scholar
  3. [3]
    Lal S., Grady N. K., Kundu J., Levin C. S., Lassiter J. B., Halas N. J., Chem. Soc. Rev., 2008, 37(5), 898CrossRefGoogle Scholar
  4. [4]
    Tong L., Zhu T., Liu Z., Chem. Soc. Rev., 2011, 40(3), 1296CrossRefGoogle Scholar
  5. [5]
    Aragay G., Pino F., Merkoci A., Chem. Rev., 2012, 112(10), 5317CrossRefGoogle Scholar
  6. [6]
    Zhou W., Gao X., Liu D., Chen X., Chem. Rev., 2015, 115(19), 10575CrossRefGoogle Scholar
  7. [7]
    Tian Z., Ren B., Li J., Yang Z., Chem. Commun., 2007, 3514Google Scholar
  8. [8]
    Nie S., Emery S. R., Science, 1997, 275(5303), 1102CrossRefGoogle Scholar
  9. [9]
    Hossain M. K., Kitahama Y., Huang G. G., Han X. X., Ozaki Y., Anal. Bioanal. Chem., 2009, 394(7), 1747CrossRefGoogle Scholar
  10. [10]
    Wang Y., Yan B., Chen L., Chem. Rev., 2013, 113(3), 1391CrossRefGoogle Scholar
  11. [11]
    Wang W., Li Z., Gu B., Zhang Z., Xu H., ACS Nano, 2009, 3(11), 3493CrossRefGoogle Scholar
  12. [12]
    Hou H., Wang P., Zhang J., Li C., Jin Y., ACS Appl. Mater. Interfaces, 2015, 7(32), 18038CrossRefGoogle Scholar
  13. [13]
    Zheng H., Ni D., Yu Z., Liang P., Food Chem., 2017, 217, 511CrossRefGoogle Scholar
  14. [14]
    Guo T., Li J., Ping D., Sun X., Sakka Y., ACS Appl. Mater. Interfaces, 2014, 6(1), 236CrossRefGoogle Scholar
  15. [15]
    Song W., Han X., Chen L., Yang Y., Tang B., Ji W., Ruan W., Xu W., Zhao B., Ozaki Y., J. Raman Spcectrosc., 2010, 41(9), 907CrossRefGoogle Scholar
  16. [16]
    Liou P., Nayigiziki F. X., Fanbin Kong F., Mustapha A., Lin M., Carbohydr. Polym., 2017, 157, 643CrossRefGoogle Scholar
  17. [17]
    Geim, A. K., Novoselov K. S., Nat. Mater., 2007, 6(3), 183CrossRefGoogle Scholar
  18. [18]
    Lin Z., McCreary A., Briggs N., Subramanian S., Zhang K. H., Sun Y. F., Li X. F., Borys N. J., Yuan H. T., Fullerton-Shirey S. K., Chemi-kov A., Zhao H., McDonnell S., Lindenberg A. M., Xiao K., LeRoy B. J., Drndic M., Hwang J. C. M., Park J., Chhowalla M., Schaak R. E., Javey A., Hersam M. C., Robinson J., Terrones M., 2D Mater., 2016, 3(4), 042001CrossRefGoogle Scholar
  19. [19]
    Fu Y., Huang T., Zhang L., Zhu J. W., Wang X., Nanoscale, 2015, 7(32), 13723CrossRefGoogle Scholar
  20. [20]
    Zhao P., Wang B. N., Chen X. Y., Qian Y. T., Chem. Res. Chinese Universities, 2009, 25(4), 412Google Scholar
  21. [21]
    Liu Y. J., Zhou F., Zhan S., Yang Y. F., Yin Y. F., Chem. Res. Chinese Universities, 2016, 32(2), 284CrossRefGoogle Scholar
  22. [22]
    Xu Q., Cheng B., Yu, J., Liu G., Carbon, 2017, 118, 241CrossRefGoogle Scholar
  23. [23]
    Xu M., Han L., Dong S., ACS Appl. Mater. Interfaces, 2013, 5(23), 12533CrossRefGoogle Scholar
  24. [24]
    Cao S., Lou J., Yu J., Jaroniec M., Adv. Mater., 2015, 27(13), 2150CrossRefGoogle Scholar
  25. [25]
    Wang X., Tan F., Wang W., Qiao X., Qiu X., Chen J., Chemosphere, 2017, 172, 147CrossRefGoogle Scholar
  26. [26]
    Song W., Ji W., Vantasin S., Tanabe I., Zhao B., Ozaki Y., J. Mater. Chem. A, 2015, 3(25), 13556CrossRefGoogle Scholar
  27. [27]
    Chong X., Zhao B., Li R., Ruan W., Yang X., Colloids Surf. A, 2015, 481, 7CrossRefGoogle Scholar
  28. [28]
    Roy S. D., Ghosh M., Chowdhury J., J. Raman Spectrosc., 2015, 46(5), 451CrossRefGoogle Scholar
  29. [29]
    Itoh T., Yamamoto Y. S., Analyst, 2016, 141, 5000CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Supramolecular Structure and MaterialsJilin UniversityChangchunP. R. China

Personalised recommendations