Chemical Research in Chinese Universities

, Volume 34, Issue 2, pp 296–301 | Cite as

Effect of Ni Precipitation Method on CO Methanation over Ni/TiO2 Catalysts

  • Shi Yin
  • Lingjun Zhu
  • Yincong Liu
  • Xiaoliu Wang
  • Yingying Liu
  • Shurong Wang


A Ni/TiO2(TBT) catalyst was prepared through in situ precipitation, using tetrabutyl titanate(TBT) as the TiO2 precursor, and was studied in CO methanation. A Ni catalyst supported on commercial TiO2 was also prepared through post precipitation and studied to compare the influence of Ni precipitation conditions on the catalyst’s performance. To gain insight on their structure and physicochemical properties, the catalysts were characterized with N2-adsorption, X-ray diffraction, transimission electron microscopy, H2 temperature programmed reduction and temperature programmed desorption. The results showed that the in situ precipitation method was beneficial to the dispersion of Ni and the formation of more active sites on the Ni/TiO2 catalyst. In addition, the density of the metal- support boundary and its interaction with the active component were also increased. These characteristics of Ni/TiO2(TBT) led to a lower light-off temperature and a suppression of Ni sintering during CO methanation. As a consequence, the Ni/TiO2(TBT) exhibited better catalytic behavior, with a CO conversion of 99.4% and CH4 selectiv-ity of 90.4% under the following conditions: p=1 MPa, t=320 °C, n(H2)/n(CO)=3, gas hour space velocity (GHSV)=2×104 mL·g–1·h–1. The life test results of the two catalysts showed that Ni/TiO2(TBT) was more stable and the catalytic activity remained at its initial level after being used for 30 h.


Methanation Ni/TiO2 Precipitation method Tetrabutyl titanate Metal-support interactions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Jin Y. L., Mcgregor J., Sederman A. J., Dennis J. S., Chem. Eng. Sci., 2016, 152, 754CrossRefGoogle Scholar
  2. [2]
    Bian Z., Meng X., Tao M., Lv Y. H., Xin Z., Fuel, 2016, 179, 193CrossRefGoogle Scholar
  3. [3]
    Li Y., Zhang Q., Chai R., Zhao G., Cao F., Ye L., Yong L., Appl. Catal. A: Gen., 2016, 510, 216CrossRefGoogle Scholar
  4. [4]
    Zhang J., Zhong X., Xin M., Miao T., Fuel, 2013, 109(7), 693CrossRefGoogle Scholar
  5. [5]
    Wang S. R., Wang H. X., Yin Q. Q., Zhu L. Z., Yin S., New J. Chem., 2014, 38(9), 4471CrossRefGoogle Scholar
  6. [6]
    Zhu L., Yin S., Yin Q., Wang H., Wang S., Energy Sci. Eng., 2015, 3(2), 126CrossRefGoogle Scholar
  7. [7]
    Djinovic P., Galletti C., Specchia V., Top. Catal., 2011, 54(16), 1042CrossRefGoogle Scholar
  8. [8]
    Kimura M., Miyao T., Komori S., Chen A., Higashiyama K., Yama-shita H., Watanabe M., Appl. Catal. A: Gen., 2010, 379(1), 182CrossRefGoogle Scholar
  9. [9]
    Panagiotopoulou P., Kondarides D. I., Verykios X. E., Catal. Today, 2012, 181(1), 138CrossRefGoogle Scholar
  10. [10]
    Galletti C., Specchia S., Saracco G., Specchia V., Chem. Eng. Sci., 2010, 65(1), 590CrossRefGoogle Scholar
  11. [11]
    Panagiotopoulou P., Kondarides D. I., Verykios X. E., Appl. Catal. B: Environ., 2009, 88(3/4), 470CrossRefGoogle Scholar
  12. [12]
    Wang G., Gao Y., Wang W., Huang W., Chinese J. Chem. Phy., 2012, 25(4), 475CrossRefGoogle Scholar
  13. [13]
    Wang W., Wang S., Ma X., Gong J., Chem. Soc. Rev., 2011, 40(7), 3703CrossRefGoogle Scholar
  14. [14]
    Kowalczyk Z., Stolecki K., Raróg-Pilecka W., Miskiewicz E., Wilczkowska E., Karpinski Z., Appl. Catal. A: Gen., 2008, 342(1/2), 35CrossRefGoogle Scholar
  15. [15]
    Ji K. M., Meng F. H., Gao Y., Li Z., Chem. J. Chinese Universities, 2016, 37(1), 134Google Scholar
  16. [16]
    Czekaj I., Loviat F., Raimondi F., Wambach J., Biollaz S., Wokaun A., Appl. Catal. A: Gen., 2007, 329(10), 68CrossRefGoogle Scholar
  17. [17]
    Hu D., Gao J., Ping Y., Jia L., Gunawan P., Zhong Z., Xu G., Gu F., Su F., Ind. Eng. Chem. Res., 2012, 51(13), 4875CrossRefGoogle Scholar
  18. [18]
    Tada S., Shimizu T., Kameyama H., Haneda T., Kikuchi R., Int. J. Hydrogen Energy, 2012, 37(7), 5527CrossRefGoogle Scholar
  19. [19]
    Aziz M. A. A., Jalil A. A., Triwahyono S., Mukti R. R., Taufiq-Yap Y. H., Sazegar M. R., Appl. Catal. B: Environ., 2014, 147(7), 359CrossRefGoogle Scholar
  20. [20]
    Struis R. P. W. J., Schildhauer T. J., Czekaj I., Janousch M., Biollaz S. M. A., Ludwig C., Appl. Catal. A: Gen., 2009, 362(1/2), 121CrossRefGoogle Scholar
  21. [21]
    Andersson M. P., Abild-Pedersen F., Remediakis I. N., Bligaard T., Jones G., Engbæk J., Lytken O., Horch S., Nielsen J. H., Sehested J., J. Catal., 2008, 255(1), 6CrossRefGoogle Scholar
  22. [22]
    Das R., Gupta A., Kumar D., Oh S. H., Pennycook S. J., Hebard A. F., J. Phys-Condens Mat., 2008, 20(38), 385213CrossRefGoogle Scholar
  23. [23]
    Guo C., Wu Y., Qin H., Zhang J., Fuel Process. Technol., 2014, 124, 61CrossRefGoogle Scholar
  24. [24]
    Erdöhelyi A., Pásztor M., Solymosi F., J. Catal., 1986, 98(1), 166CrossRefGoogle Scholar
  25. [25]
    Urasaki K., Tanpo Y., Nagashima Y., Kikuchi R., Satokawa S., Appl. Catal. A: Gen., 2013, 452, 174CrossRefGoogle Scholar
  26. [26]
    Shinde V. M., Madras G., AICHE J., 2014, 60(3), 1027CrossRefGoogle Scholar
  27. [27]
    Lin X., Lin L., Huang K., Chen X., Dai W., Fu X., Appl. Catal. B: Environ., 2015, 168/169, 416CrossRefGoogle Scholar
  28. [28]
    Liang H. O., Bai J., Yu D. D., Zhang Q. Y., Li C. P., Chem. J. Chinese Universities, 2017, 38(6), 947Google Scholar
  29. [29]
    Yan X., Liu Y., Zhao B., Wang Z., Wang Y., Liu C. J., Int. J. Hydro-gen Energy, 2013, 38(5), 2283CrossRefGoogle Scholar
  30. [30]
    Ho S. W., Chu C. Y., Chen S. G., J. Catal., 1998, 178(1), 34CrossRefGoogle Scholar
  31. [31]
    Seo J. G., Min H. Y., Song I. K., J. Molecul. Catal. A: Chem., 2007, 268(1/2), 9CrossRefGoogle Scholar
  32. [32]
    Liu J., Li C., Wang F., He S., Chen H., Zhao Y., Wei M., Evans D. G., Duan X., Catal. Sci. Technol., 2013, 3(10), 2627CrossRefGoogle Scholar
  33. [33]
    Loc L. C., Tuan N. M., Dung N. K., Phuc N. H. H., Thoang H. S., J. Clin. Microbiol., 2008, 29(3), 573Google Scholar
  34. [34]
    Jia C., Gao J., Li J., Gu F., Xu G., Zhong Z., Su F., Catal. Sci. Tech-nol., 2013, 3(2), 490CrossRefGoogle Scholar
  35. [35]
    Guo H., Zhao X., Huilin Guo A., Zhao Q., Langmuir, 2008, 19(23), 9799CrossRefGoogle Scholar
  36. [36]
    Wang Y., Ren J., Wang Y., Zhang F., Liu X., Guo Y., Lu G., J. Phy. Chem. C, 2014, 112(39), 15293CrossRefGoogle Scholar
  37. [37]
    Zhu Y., Zhang S., Ye Y., Zhang X., Wang L., Zhu W., Cheng F., Tao F., ACS Catal., 2012, 2(2), 2403CrossRefGoogle Scholar
  38. [38]
    Cunha E. V., Faccin F., Moro C. C., De Castro S. C., Química Nova, 2002, 25(3), 392CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Clean Energy UtilizationZhejiang UniversityHangzhouP. R. China

Personalised recommendations