Advertisement

Chemical Research in Chinese Universities

, Volume 33, Issue 6, pp 929–933 | Cite as

Physicochemical properties of Bi-containing ionic liquid analogs based on choline chloride

Article
  • 34 Downloads

Abstract

The preparation and characterization of homogeneous and colorless ionic liquid analogs(ILAs) containing choline chloride(ChCl), malonic acid and bismuth chloride were investigated. The structure of the above mixture was preliminarily analyzed, and then the physicochemical properties including viscosity, conductivity and density were investigated as functions of temperature and composition. Additionally, the thermal stability of the ILAs and the electrochemical behavior of Bi3+ ions in the medium were studied. Structure analysis reveals that the synthesis of deep eutectic solvents(DESs) is closely related to the formation of hydrogen bonds between malonic acid and ChCl, with their viscosity, conductivity and density being greatly dependent on the temperature and composition. Thermogravimetric analysis demonstrates that the ILAs are very stable between room temperature and 398.15 K. And the electrochemical experiments indicate that the bismuth films can be successfully deposited from this ILAs and the deposition mechanism of bismuth is a rather irreversible process. The surface morphology of bismuth films deposited on Cu substrates was very compact and smooth. Thus, ChCl-malonic acid DESs were shown to be a good alternative to aqueous solvents for various deposition-related applications.

Keywords

Ionic liquid analog Physicochemical property Bismuth Choline chloride Deposition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Ma Y., Wljesekara W., Palmqvist A. E. C., J. Electron. Mater., 2012, 41(6), 1138CrossRefGoogle Scholar
  2. [2]
    Misra D. K., Sumithra S., Chauhan N. S., Nolting W. M., Poudeu P. F. P., Stokes Kevin L., Mat. Sci. Semicon. Proc., 2015, 40, 453CrossRefGoogle Scholar
  3. [3]
    Patil P. B., Mali S. S., Khot K. V., Kondalkar V. V., Ghanwat V. B., Mane R. M., Kharade R. R., Bhosale P. N., Macromol. Symp., 2016, 361(1), 152CrossRefGoogle Scholar
  4. [4]
    Zimmer A., Broch L., Boulanger C., Stein N., Electrochim. Acta, 2015, 174, 376CrossRefGoogle Scholar
  5. [5]
    Zhou J., Lin Q. H., Li H. Y., Cheng X., Mater. Chem. Phys., 2013, 141(1), 401CrossRefGoogle Scholar
  6. [6]
    Wang Z. L., Takahiro A., Tetsuhiko O., Chen Z. C., J. Alloy Compd., 2016, 663, 134CrossRefGoogle Scholar
  7. [7]
    Duan X. K., Jiang Y. Z., Thin Solid Films, 2011, 519(10), 3007CrossRefGoogle Scholar
  8. [8]
    Bu L.X., Wang W., Wang H., Appl. Surf. Sci., 2007, 253(6), 3360CrossRefGoogle Scholar
  9. [9]
    Song Y., Yoo I. J., Heo N. R., Lim D. C., Lee D., Lee J. Y., Lee K. H., Kim K. H., Lim J. H., Curr. Appl. Phys., 2015, 15(3), 261CrossRefGoogle Scholar
  10. [10]
    Suzuki Y., Chen Z. L., Fuwa A., J. Jpn. I. Met., 2014, 78(8), 310CrossRefGoogle Scholar
  11. [11]
    Manzano C. V., Rojas A. A., Decepida M., Abad B., Feliz Y., Caballero-Calero O., Borca-Tasciuc D. A., Martin-Gonzalez M., J. Solid State Electr., 2013, 17(7), 2071CrossRefGoogle Scholar
  12. [12]
    Xu H., Wang W., J. Electron. Mater., 2013, 42(7), 1936CrossRefGoogle Scholar
  13. [13]
    Li F. H., Wang W., Electrochim. Acta, 2010, 55(17), 5000CrossRefGoogle Scholar
  14. [14]
    Golgovici F., Cojocaru A., Nedelcu M., Visan T., J. Electron. Mater., 2010, 39(9), 2079CrossRefGoogle Scholar
  15. [15]
    Paiva A., Craveiro R., Aroso I., Martins M., Reis R. L., Duarte A. R. C., ACS Sustain Chem. Eng., 2014, 2, 1063CrossRefGoogle Scholar
  16. [16]
    Popescu A. M., Constantin V., Chem. Res. Chinese Universities, 2014, 30(1), 119CrossRefGoogle Scholar
  17. [17]
    Adeeb H., Farouq S., Mjalli I. M., Yahya M., J. Mol. Liq., 2013, 178, 137CrossRefGoogle Scholar
  18. [18]
    Abbott A. P., Capper G., Davies D. L., Munro H. L., Rasheed R. K., Tambyrajah V., Chem. Commun., 2001, (19), 2010CrossRefGoogle Scholar
  19. [19]
    Abbott A. P., McKenzie K. J., Phys. Chem. Chem. Phys., 2006, 8, 4265CrossRefGoogle Scholar
  20. [20]
    Wang H. Y., Jia Y. Z., Wang X. H., Yao Y., Jing Y., J. Therm. Anal. Calorim., 2014, 115, 1779CrossRefGoogle Scholar
  21. [21]
    Habibi E., Ghanemi K., Mehdi F., Ali D., Anal. Chim. Acta, 2013, 762, 61CrossRefGoogle Scholar
  22. [22]
    Mccalman D. C., Sun L., Zhang Y., Brennecke J. F., Maginn E. J., Schneider W. F., J. Phys. Chem. B, 2015, 119, 6018CrossRefGoogle Scholar
  23. [23]
    Bougou M., Van Elew A., Steichen M., Buess-Herman C., Doneux T., J. Solid State Electrochem., 2013, 17, 527CrossRefGoogle Scholar
  24. [24]
    Agapescu C., Cojocaru A., Cotarta A., Visan T., J. Appl. Electro-chem., 2013, 43, 309CrossRefGoogle Scholar
  25. [25]
    Srivastava M., Yoganandan G., William Grips V. K., Surf. Eng., 2012, 28(6), 424CrossRefGoogle Scholar
  26. [26]
    Cojocaru A., Mares M. L., Prioteasa P., Anicai L., Visan T., J. Solid State Electrochem., 2015, 19, 1001CrossRefGoogle Scholar
  27. [27]
    Protsenko V. S., Bobrova L. S., Danilov F. I., Ionics, 2017, 23(3), 637CrossRefGoogle Scholar
  28. [28]
    Golgovici F., Visan T., Buda M., Chalcogenide Lett., 2013, 10(6), 197Google Scholar
  29. [29]
    Kang W. S., Li W. J., Chou W. C., Tseng M. F., Lin C. S., Thin Solid Films, 2017, 623, 90CrossRefGoogle Scholar
  30. [30]
    Gan Y. X., Sweetman J., Lawrence J. G., Mater. Lett., 2010, 64(3), 449CrossRefGoogle Scholar
  31. [31]
    Li F. H., Wang W., Appl. Surf. Sci., 2009, 255(7), 4225CrossRefGoogle Scholar
  32. [32]
    Ebe H., Ueda M., Ohtsuka T., Electrochim. Acta, 2007, 53(1), 100CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Applied Chemistry, College of Basic ScienceTianjin Agricultural UniversityTianjinP. R. China

Personalised recommendations