Advertisement

Chemical Research in Chinese Universities

, Volume 33, Issue 5, pp 731–735 | Cite as

Insights into the interactions between corrinoid iron-sulfur protein and methyl transferase from human pathogen Clostridium difficile

  • Yaozhu Wei
  • Xiangshi Tan
Article
  • 48 Downloads

Abstract

The human pathogen Clostridium difficile infection(CDI) is one of the most important healthcare-associated infections. Methyltransferase(MeTrCd) and corrinoid iron-sulfur protein(CoFeSPCd) are two key proteins in the acetyl-coenzyme A synthesis pathway of Clostridium difficile, which is essential for the survival of the pathogen and is absent in humans. Hence, the interaction between MeTrCd and CoFeSPCd can become innovative targets for the treatment of human CDI. In this study, the interaction between MeTrCd and CoFeSPCd was verified by fluorescence resonance energy transfer measurements. The influence of the interaction on the tertiary structure of MeTrCd and CoFeSPCd was studied by ANS-labeled fluorescence measurements. Molecular docking was also performed to understand the mechanism of the protein interactions. These results provide a molecular basis for innovative drug design and development to treat human CDI.

Keywords

Corrinoid iron-sulfur protein Methyl transferase Clostridium difficile Protein interaction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Rupnik M., Wilcox M. H., Gerding D. N., Nature Reviews Microbi-ology, 2009, 7(7), 526CrossRefGoogle Scholar
  2. [2]
    Loo V. G., Poirier L., Miller M. A., Oughton M., Libman M. D., Michaud S., Bourgault A. M., Nguyen T., Frenette C., Kelly M., Vi-bien A., Brassard P., Fenn S., Dewar K., Hudson T. J., Horn R., Rene P., Monczak Y., Dascal A., The New England Journal of Medicine, 2005, 353(23), 2442CrossRefGoogle Scholar
  3. [3]
    McDonald L. C., Killgore G. E., Thompson A., Owens R. C. Jr., Kazakova S. V., Sambol S. P., Johnson S., Gerding D. N., The New England Journal of Medicine, 2005, 353(23), 2433CrossRefGoogle Scholar
  4. [4]
    Williams O. M., Spencer R. C., British Medical Bulletin, 2009, 91, 87CrossRefGoogle Scholar
  5. [5]
    Babcock G. J., Broering T. J., Hernandez H. J., Mandell R. B., Donahue K., Boatright N., Stack A. M., Lowy I., Graziano R., Molrine D., Ambrosino D. M., Thomas W. D. Jr., Infection and Immunity, 2006, 74(11), 6339CrossRefGoogle Scholar
  6. [6]
    McFarland L. V., Anaerobe, 2009, 15(6), 274CrossRefGoogle Scholar
  7. [7]
    Shah D., Dang M. D., Hasbun R., Koo H. L., Jiang Z. D., DuPont H. L., Garey K. W., Expert Review of Anti-infective Therapy, 2010, 8(5), 555CrossRefGoogle Scholar
  8. [8]
    Grewal N. S., Salim A., Scandinavian Journal of Surgery, 2010, 99(2), 90CrossRefGoogle Scholar
  9. [9]
    Faris B., Blackmore A., Haboubi N., Techniques in Coloproctology, 2010, 14(2), 97CrossRefGoogle Scholar
  10. [10]
    Koo H. L., Garey K. W., Dupont H. L., Expert Opinion on Investiga-tional Drugs, 2010, 19(7), 825CrossRefGoogle Scholar
  11. [11]
    Sebaihia M., Wren B. W., Mullany P., Fairweather N. F., Minton N., Stabler R., Thomson N. R., Roberts A. P., Cerdeno-Tarraga A. M., Wang H., Holden M. T., Wright A., Churcher C., Quail M. A., Baker S., Bason N., Brooks K., Chillingworth T., Cronin A., Davis P., Dowd L., Fraser A., Feltwell T., Hance Z., Holroyd S., Jagels K., Moule S., Mungall K., Price C., Rabbinowitsch E., Sharp S., Sim-monds M., Stevens K., Unwin L., Whithead S., Dupuy B., Dougan G., Barrell B., Parkhill J., Nature Genetics, 2006, 38(7), 779CrossRefGoogle Scholar
  12. [12]
    Moura J. J., Brondino C. D., Trincao J., Romao M. J., Journal of Biological Inorganic Chemistry, 2004, 9(7), 791CrossRefGoogle Scholar
  13. [13]
    Doukov T. I., Hemmi H., Drennan C. L., Ragsdale S. W., Journal of Biological Chemistry, 2007, 282(9), 6609CrossRefGoogle Scholar
  14. [14]
    Stich T. A., Seravalli J., Venkateshrao S., Spiro T. G., Ragsdale S. W., Brunold T. C., J. Am. Chem. Soc., 2006, 128(15), 5010CrossRefGoogle Scholar
  15. [15]
    Matthews R. G., Koutmos M., Datta S., Curr. Opin. Struct. Biol., 2008, 18(6), 658CrossRefGoogle Scholar
  16. [16]
    Ragsdale S. W., Pierce E., Biochimica et Biophysica Acta, 2008, 1784(12), 1873CrossRefGoogle Scholar
  17. [17]
    Zhu X. F., Gu X., Zhang S. X., Liu Y., Huang Z. X., Tan X. S., Pro-tein Expr. Purif., 2011, 78(1), 86CrossRefGoogle Scholar
  18. [18]
    Zhu X. F., Li T. J., Gu X., Zhang S. X., Liu Y., Wang Y., Tan X. S., Metallomics: Integrated Biometal Science, 2013, 5(5), 551CrossRefGoogle Scholar
  19. [19]
    Wei Y. Z., Zhu X. F., Zhang S. X., Tan X. S., Journal of Inorganic Biochemistry, 2017, 170, 26CrossRefGoogle Scholar
  20. [20]
    Hu S. I., Pezacka E., Wood H. G., Journal of Biological Chemistry, 1984, 259(14), 8892Google Scholar
  21. [21]
    Lu W. P., Harder S. R., Ragsdale S. W., The Journal of Biological Chemistry, 1990, 265(6), 3124Google Scholar
  22. [22]
    Chen R., Weng Z., Proteins, 2003, 51(3), 397CrossRefGoogle Scholar
  23. [23]
    Li W. Z., Meng W., Tian P., Chem. Res. Chinese Universities, 2015, 31(1), 149CrossRefGoogle Scholar
  24. [24]
    Kung Y., Ando N., Doukov T. I., Blasiak L. C., Bender G., Seravalli J., Ragsdale S. W., Drennan C. L., Nature, 2012, 484(7393), 265CrossRefGoogle Scholar
  25. [25]
    Wen J. Y., Lv B. B., Zhang Y., Wang J. M., Ying X., Wang H., Ji L. N., Liu H. Y., Chem. J. Chinese Universities, 2015, 36(6), 1033Google Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Shanghai Key Laboratory of Chemical Biology for Protein Research, Department of ChemistryFudan UniversityShanghaiP. R. China

Personalised recommendations