Advertisement

Chemical Research in Chinese Universities

, Volume 33, Issue 6, pp 934–938 | Cite as

Enhanced visible-light-driven photocatalytic performance of In2O3-loaded TiO2 nanocubes with exposed (001) facet

  • Bifen Gao
  • Jianfeng Wan
  • Desheng Hu
  • Yilin Chen
  • Bizhou Lin
Article
  • 42 Downloads

Abstract

The heterostructures of In2O3 nanoparticle loaded on anatase TiO2 nanocube with exposed (001) facet (In2O3/TiO2-nanocube) were fabricated via a two-step hydrothermal process. The crystal phase, morphology, microstructure and photo-absorption property of the products were characterized by FESEM, TEM, XRD, and UV-Vis diffuse reflectance spectroscopy. The results showed that the percentage of exposed (001) facet of TiO2 nanocube was about 33%. In2O3 nanoparticles were successfully decorated on the surface of TiO2 nanocube to form the In2O3/TiO2 heterojunction. Photocurrent measurements confirmed that (001) faceted surface was advantageous for the charge carrier migration and separation in the composites. In comparison with bare TiO2 nanocube and In2O3/TiO2-nanoparticle, the In2O3/TiO2-nanocube heterostructures exhibited enhanced activity toward the degradation of rhodamine B and tetracycline under visible light irradiation, which was attributed to the synergic effect of In2O3/TiO2 heterojunction and the exposure of (001) facet.

Keywords

Photocatalytic activity Heterojunction Crystal facet In2O3-loaded TiO2 nanocubes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Liu Y., Zhou L., Hu Y., Guo C., Qian H., Zhang F., Lou X. W., J. Mater. Chem., 2011, 21, 18359CrossRefGoogle Scholar
  2. [2]
    Sun D. D., Cao Y. Y., Xu Y. Y., Zhang G. Y., Sun Y. Q., Chem. Res. Chinese Universities, 2016, 32(6), 882CrossRefGoogle Scholar
  3. [3]
    Wang X. Y., Wang H., Yang X. T., Su X. G., Chem. Res. Chinese Universities, 2016, 32(4), 661CrossRefGoogle Scholar
  4. [4]
    Yang H. G., Sun C. H., Qiao S. Z., Zou J., Liu G., Smith S. C., Cheng H. M., Lu G. Q., Nature, 2008, 453, 638CrossRefGoogle Scholar
  5. [5]
    Han X. G., Kuang Q., Jin M. S., J. Am. Chem. Soc., 2009, 131, 3152CrossRefGoogle Scholar
  6. [6]
    Liu S., Yu J., Jaroniec M., J. Am. Chem. Soc., 2010, 132, 11914CrossRefGoogle Scholar
  7. [7]
    Chen J. S., Tan Y. L., Li C. M., Cheah Y. L., Luan D., Madhavi S., Boey F. Y. C., Archer L. A., Lou X. W., J. Am. Chem. Soc., 2010, 132, 6124CrossRefGoogle Scholar
  8. [8]
    Pavan M., Rühle S., Ginsburg A., Keller D. A., Barad H., Sberna P. M., Nunes D., Martins R., Anderson A. Y., Zaban A., Fortunato E., Sol. Energy Mater. Sol. C, 2015, 132, 549CrossRefGoogle Scholar
  9. [9]
    Zhu Y., Wang Y., Chen Z., Qin L., Yang L., Zhu L., Tang P., Gao T., Huang Y., Sha Z., Tang G., Appl. Catal. A: Gen., 2015, 498, 159CrossRefGoogle Scholar
  10. [10]
    Wang Q., Li S., Qiao J., Jin R., Yu Y., Gao S., Sol. Energy Mater. Sol. C, 2015, 132, 650CrossRefGoogle Scholar
  11. [11]
    Ma F., Geng Z., Yang X., Leng J., RSC Adv., 2015, 5, 46677CrossRefGoogle Scholar
  12. [12]
    Mu J., Chen B., Zhang M., Guo Z., Zhang P., Zhang Z., Sun Y., Shao C., Liu Y., ACS Appl. Mater. Inter., 2012, 4, 424CrossRefGoogle Scholar
  13. [13]
    Amoli V., Sibi M. G., Banerjee B., Anand M., Maurya A., Farooqui S. A., Bhaumik A., Sinha A. K., ACS Appl. Mater. Inter., 2015, 7, 810CrossRefGoogle Scholar
  14. [14]
    Amoli V., Farooqui S., Rai A., Santra C., Rahman S., Sinha A. K., Chowdhury B., RSC Adv., 2015, 5, 67089CrossRefGoogle Scholar
  15. [15]
    Niyomkarn S., Puangpetch T., Chavadej S., Mat. Sci. Semicon. Proc., 2014, 25, 112CrossRefGoogle Scholar
  16. [16]
    Lalitha K., Kumari V. D., Subrahmanyam M., Indian J. Chem., 2014, 5, 472Google Scholar
  17. [17]
    Wu M., Wang C., Zhao Y., Xiao L., Zhang C., Yu X., Luo B., Hu B., Fan W., Shi W., CrystEngComm, 2015, 17, 2336CrossRefGoogle Scholar
  18. [18]
    Li H., Zeng Y., Huang T., Piao L., Liu M., ChemPlusChem, 2012, 77, 1017CrossRefGoogle Scholar
  19. [19]
    Gao B., Yuan X., Lu P., Lin B., Chen Y., J. Phys. Chem. Solids, 2015, 87, 171CrossRefGoogle Scholar
  20. [20]
    Chen L. Y., Liang Y., Zhang Z., Eur. J. Inorg. Chem., 2009, 7, 903CrossRefGoogle Scholar
  21. [21]
    Meng S., Cao Z., Fu X., Chen S., Appl. Surf. Sci., 2015, 324, 188CrossRefGoogle Scholar
  22. [22]
    Cao M., Wang P., Ao Y., Wang C., Hou J., Qian J., J. Colloid Interf. Sci., 2016, 467, 129CrossRefGoogle Scholar
  23. [23]
    Lv J., Kako T., Li Z., Zou Z., Ye J., J. Phys. Chem. C, 2010, 114, 6157CrossRefGoogle Scholar
  24. [24]
    Gao B., Kim Y. J., Chakraborty A. K., Lee W. I., Appl. Catal. B: Environ., 2008, 83, 202CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Bifen Gao
    • 1
  • Jianfeng Wan
    • 1
  • Desheng Hu
    • 1
  • Yilin Chen
    • 1
  • Bizhou Lin
    • 1
  1. 1.Department of Applied Chemistry, College of Materials Science and EngineeringHuaqiao UniversityXiamenP. R. China

Personalised recommendations