Advertisement

Chemical Research in Chinese Universities

, Volume 33, Issue 6, pp 864–868 | Cite as

Structure and enhanced antifungal activity of a divalent cobalt(II) complex with hexaconazole

  • Jinhua Zhou
  • Jingjing Li
  • Jie Li
  • Guoyu Ren
  • Yinghui Ren
  • Haixia Ma
Article

Abstract

A new CoII complex, [CoL4Cl2]·2CH3CH2OH(L=hexaconazole), was synthesized and characterized by means of elemental analysis, infrared spectroscopy and single-crystal X-ray diffraction. The crystal structural analysis shows that the centrosymmetric Co2+ is coordinated by four hexaconazole ligands and two Cl to form a distorted octahedral geometry. The complex forms 1D chains through the intermolecular hydrogen bonds interaction of O―H···O and O―H···Cl. Furthermore, the antifungal activities of the complex against Grape anthracnose(I), Botryosphaeria berengriana(II), Botryosphaeria ribis(III) and Wheat gibberellic(IV) have been investigated and compared with those of the corresponding ligand. The results show that the complex has better antifungal activity than the ligand, which indicates that the coordination of the ligand and the metal enhances the antimicrobialactivity.

Keywords

CoII complex Hexaconazole Crystal structure Antifungal activity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Todoroki Y., Kobayashi K., Yoneyama H., Hiramatsu S., Jin M. H., Watanabe B., Bioorg. Med. Chem., 2008, 16, 3141CrossRefGoogle Scholar
  2. [2]
    Bromilow R. H., Evans A. A., Nicholls P. H., Pest Manag. Sci., 1999, 55, 1135CrossRefGoogle Scholar
  3. [3]
    Tabatabaee M., Bordbar M., Ghassemzade M., Tahriri M., Lighvan Z. M., Neumüller B., Eur. J. Med. Chem., 2013, 70, 364CrossRefGoogle Scholar
  4. [4]
    Xiong P., Li J., Bu H., Wei Q., Zhang R., Chen S., J. Solid State Chem., 2014, 215, 292CrossRefGoogle Scholar
  5. [5]
    Singh A. K., Pandey O. P., Sengupta S. K., Spectrochim. Acta, Part A, 2012, 85, 1CrossRefGoogle Scholar
  6. [6]
    Hadjikakou S. K., Antoniadis C. D., Hadjiliadis N., Kubicki M., Binolis J., Karkabounas S., Charalabopoulos K., Inorg. Chim. Acta, 2005, 358, 2861CrossRefGoogle Scholar
  7. [7]
    Manjunatha K. B., Dileep R., Umesh G., Bhat B. R., Opt. Mater., 2013, 35, 1366CrossRefGoogle Scholar
  8. [8]
    Luo Y. N., Xu X. Z., Zhang X., Yu X. Y., Qu X. S., Yang Y. Y., Shen Q. H., Chem. Res. Chinese Universities, 2013, 29(6), 1045CrossRefGoogle Scholar
  9. [9]
    Matesanz A. I., Mosa J., Garcı́A I., Pastor C., Souza P., Inorg. Chim. Commun., 2004, 7, 756CrossRefGoogle Scholar
  10. [10]
    Wang B., Zhang L. L., Ni J., Xu R. Q., Cheng K. H., J. Beijing Fore-stry University, 2015, 37, 135Google Scholar
  11. [11]
    Bi Y. B, Pan H. Y., Zhang X. Q., Zhao J., Bu H. Y., Chin. Agric. Sci. Bull., 2012, 28, 213Google Scholar
  12. [12]
    Tao C., Dwyregygax C., Smith R. S., Breuil C., Agric. Food Chem., 1995, 43, 1400CrossRefGoogle Scholar
  13. [13]
    Worthington P. A., Pestic. Sci., 1991, 31, 457CrossRefGoogle Scholar
  14. [14]
    Zhao H. Q., Tian J. L., Zhang Y. X., Northern Horticulture, 2008, 9, 182Google Scholar
  15. [15]
    Lu W., Zhu D. R., Xu Y., Cheng H. M., Zhao J., Shen X., Struct. Chem., 2010, 21, 237CrossRefGoogle Scholar
  16. [16]
    Phillips C. P., Snow R. A., Lyophilized Polyethylene Oxide Modified Catalase Composition, Polypeptide Complexes with Cyclodextrin and Treatment of Diseases with the Catalase Compositions, US5334382, 1994Google Scholar
  17. [17]
    Khairnar G. A., Chavanpatil A. B., Palve P. R., Bhise S. B., Mourya V. K., Kulkarni C. G., International J. Pharmtech Research, 2010, 2, 736Google Scholar
  18. [18]
    Lara-Márquez A., Zavala-Páramo M. G., López-Romero E., Cama-cho H. C., Biotechnol. Lett., 2011, 33, 859CrossRefGoogle Scholar
  19. [19]
    Gural’Skiy I. A., Reshetnikov V. A., Szebesczyk A., Gumienna-Kontecka E., Marynin A. I., Shylin S. I., J. Mater. Chem. C, 2015, 3, 4737CrossRefGoogle Scholar
  20. [20]
    Singh M. S., Prasada Rao K., Synthesis and Reactivity in Inorganic and Metal-organic Chemistry, 1999, 29, 541CrossRefGoogle Scholar
  21. [21]
    Evans P. D., Schmalzl K. J., Forsyth C. M., Fallon G. D., Schmid S., Bendixen B., Heimdal S., J. Wood Chem. Technol., 2007, 27, 243CrossRefGoogle Scholar
  22. [22]
    Ferreira D. E. C., Doc S. H. F., Almeida W. B. D., Junqueira G. M. A., J. Bra. Chem. Soc., 2007, 18, 901Google Scholar
  23. [23]
    Klingele M. H., Boyd P. D. W., Moubaraki B., Murray K. S., Brooker S., Berichte Der Deutschen Chemischen Gesellschaft, 2005, 5, 910Google Scholar
  24. [24]
    Shaber S. H., Cyanosulfonylethyltriazoles and Their Use as Fungi-cides, EP0606748, 1994Google Scholar
  25. [25]
    Zhu D. R., Song Y., Xu Y., Zhang Y., Raj, S. S. S., Fun H. K., You X. Z., Polyhedron, 2010, 19, 2019CrossRefGoogle Scholar
  26. [26]
    Beckmann U., Brooker S., Chem. Rev., 2003, 245, 17Google Scholar
  27. [27]
    Maghami M., Farzaneh F., Simpson J., Ghiasi M., Azarkish M., J. Mol. Struct., 2015, 1093, 24CrossRefGoogle Scholar
  28. [28]
    Maghami M., Farzaneh F., Simpson J., Moazeni A., Polyhedron, 2014, 73, 22CrossRefGoogle Scholar
  29. [29]
    Cobanoglu U., Demir H., Sayir F., Duran M., Mergan D., Asian Pac. J. Cancer Prev., 2010, 11, 1383Google Scholar
  30. [30]
    Rascio N., Navari-Izzo F., Plant Sci., 2011, 180, 169CrossRefGoogle Scholar
  31. [31]
    Krause L., Herbstirmer R., Sheldrick G. M., Stalke D., J. Appl. Cryst., 2015, 48, 3CrossRefGoogle Scholar
  32. [32]
    Sheldrick G. M., Acta Crystallogr. Sect. A, 2008, 64, 112CrossRefGoogle Scholar
  33. [33]
    Zhang X., Du C., Chen D., Huang M., Chin. J. Inorg. Chem., 2010, 26, 489CrossRefGoogle Scholar
  34. [34]
    Gökçe C., Dilek N., Gup R., Inorg. Chim. Acta, 2015, 432, 213CrossRefGoogle Scholar
  35. [35]
    Xi T., Li J., Yan B., Yang M. Y., Song J. R., Ma H. X., Acta Crystal-logr. C, 2015, 71, 889CrossRefGoogle Scholar
  36. [36]
    Chaudhary A., Bansal N., Gajraj A., Singh R. V., J. Inorg. Bio. Chem., 2003, 96, 393CrossRefGoogle Scholar
  37. [37]
    Li J., Xi T., Yan B., Guan Y. L., Yang M. Y., Song J. R., Ma H. X., New J. Chem., 2015, 39, 9550CrossRefGoogle Scholar
  38. [38]
    Shakru R., Subhashini N. J. P., Sathish Kumar K., Shivaraj, J. Chem. Pharm. Res., 2010, 2, 38Google Scholar
  39. [39]
    Tharmaraj P., Kodimunthiri D., Sheela C. D., Priya C. S. S., J. Serb. Chem. Soc., 2009, 74, 927CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.School of Chemical EngineeringNorthwest UniversityXi’anP. R. China

Personalised recommendations