Chemical Research in Chinese Universities

, Volume 33, Issue 6, pp 951–957 | Cite as

Design of L-cysteine functionalized Au@SiO2@Fe3O4/nitrogen-doped graphene nanocomposite and its application in electrochemical detection of Pb2+

  • Jing Nie
  • Bin He
  • Yanmei Cheng
  • Wei Yin
  • Changjun Hou
  • Danqun Huo
  • Linlin Qian
  • Yunan Qin
  • Huanbao Fa


A novel magnetic electrochemical sensor was designed for determination of lead ions based on gold nanoparticles(AuNPs)@SiO2@Fe3O4/nitrogen-doped graphene(NG) composites functionalized with L-cysteine. The Au@SiO2@Fe3O4/NG was synthesized by the electrostatic adsorption between AuNPs and SiO2-coated Fe3O4 NPs(SiO2@Fe3O4) and the amide bond between Au@SiO2@Fe3O4 and NG. L-Cysteine was successfully functionalized on the surface of Au@SiO2@Fe3O4/NG nanocomposites via the S―Au bond between L-cysteine and AuNPs. Owing to numerous active sites in L-cysteines and high conductivity of Au@SiO2@Fe3O4/NG composites, the proposed electrochemical sensor exhibited a well-distributed nanostructure and high responsivity toward Pb(II). The sensor linearly responded to Pb2+ concentration in the range of 5―80 μg/L with a detection limit of 0.6 μg/L, indicating that this L-cysteine functionalized Au@SiO2@Fe3O4/NG composite could be a promising candidate material for the detection of Pb2+.


Electrochemical sensor Lead Nitrogen-doped graphene Au@SiO2@Fe3O4 L-Cysteine 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Lim H. S., Lee J. S., Chon H. T., Sager M., J. Geochem. Explor., 2008, 96(2/3), 223CrossRefGoogle Scholar
  2. [2]
    Cheng H., Hu Y., Environ. Pollut., 2010, 158(158), 1134CrossRefPubMedGoogle Scholar
  3. [3]
    Bontidean I., Ahlqvist J., Mulchandani A., Chen W., Bae W., Mehra R. K., Mortari A., Csoregi E., Biosens. Bioelectron, 2003, 18(5/6), 547CrossRefGoogle Scholar
  4. [4]
    Atsuo I., J. Environ. Sci. China, 2009, 21(8), 1118CrossRefGoogle Scholar
  5. [5]
    Soliman M. M., Baiomy A. A., Yassin M. H., Biol. Trace. Elem. Res., 2015, 167(1), 91CrossRefPubMedGoogle Scholar
  6. [6]
    Zhang H., Wei K., Zhang M., Liu R., Chen Y., J. Photoch. Photobio B, 2014, 136(7), 46CrossRefGoogle Scholar
  7. [7]
    Soylak M., Elçi L., Dogan M., J. Trace Microprobe T., 1999, 17(2), 149Google Scholar
  8. [8]
    Poitrasson F., Chenery S., Shepherd T. J., Geochim. Cosmochim. Ac., 2006, 64(19), 3283CrossRefGoogle Scholar
  9. [9]
    Liu J., Lu Y., J. Am. Chem. Soc., 2004, 126(39), 12298CrossRefPubMedGoogle Scholar
  10. [10]
    Xiang Y., Tong A., Lu Y., J. Am. Chem. Soc., 2009, 131(42), 15352CrossRefPubMedPubMedCentralGoogle Scholar
  11. [11]
    Zhu X., Lin Z., Chen L., Qiu B., Chen G., Chem. Commun., 2009, (40), 6050CrossRefGoogle Scholar
  12. [12]
    Iost R. M., Crespilho F. N., Biosens. Bioelectron., 2012, 31(1), 1CrossRefPubMedGoogle Scholar
  13. [13]
    Xu X., Duan G., Li Y., Liu G., Wang J., Zhang H., Dai Z., Cai W., Acs Appl. Mater. Inter., 2013, 6(1), 65CrossRefGoogle Scholar
  14. [14]
    Shao Y., Wang J., Wu H., Liu J., Aksay I. A., Lin Y., Electroanal., 2010, 22(10), 1027CrossRefGoogle Scholar
  15. [15]
    Lian P., Zhu X., Xiang H., Zhong L., Yang W., Wang H., Electrochim. Acta, 2010, 56(2), 834CrossRefGoogle Scholar
  16. [16]
    Liang Y., Li Y., Wang H., Zhou J., Wang J., Regier T., Dai H., Nat. Mater., 2011, 10(10), 780CrossRefPubMedGoogle Scholar
  17. [17]
    Wu Z. S., Ren W., Wen L., Gao L., Zhao J., Chen Z., Zhou G., Li F., Cheng H. M., Acs Nano, 2010, 4(6), 3187CrossRefPubMedGoogle Scholar
  18. [18]
    Wang P., Mai Z., Zong D., Li Y., Zou X., Biosens. Bioelectron., 2009, 24(11), 3242CrossRefPubMedGoogle Scholar
  19. [19]
    Zhang Y., Li L., Yang H., Ding Y., Su M., Zhu J., Yan M., Yu J., Song X., Rsc Adv., 2013, 3(34), 14701CrossRefGoogle Scholar
  20. [20]
    Shore M. S., Wang J., Johnston-Peck A. C., Oldenburg A. L., Tracy J. B., Small, 2011, 7(2), 230CrossRefPubMedGoogle Scholar
  21. [21]
    Feifel S. C., Lisdat F., J. Nanobiotecg., 2011, 9(9), 177Google Scholar
  22. [22]
    Altintas Z., Kallempudi S. S., Sezerman U., Gurbuz Y., Sensor. Ac-tuat. B: Chem., 2012, 174(11), 187CrossRefGoogle Scholar
  23. [23]
    Fei J., Dou W., Zhao G., Rsc Adv., 2015, 5(91), 74548CrossRefGoogle Scholar
  24. [24]
    Han Q., Xin S., Zhu W., Zhu C., Zhou X., Jiang H., Biosens. Bio-electron., 2015, 79, 180CrossRefGoogle Scholar
  25. [25]
    Cheng Y. M., Fa H. B., Yin W., Hou C. J., Huo D. Q., Liu F. M., Zhang Y., Chen C., J. Solid State Electr., 2015, 20(2), 327CrossRefGoogle Scholar
  26. [26]
    Deng H., Li X., Peng Q., Wang X., Chen J., Li Y., Angew. Chem. Int. Edit., 2005, 44(18), 2782CrossRefGoogle Scholar
  27. [27]
    Daneshpour M., Moradi L. S., Izadi P., Omidfar K., Biosens. Bio-electron., 2016, 77, 1095CrossRefGoogle Scholar
  28. [28]
    Xiong S., Wang M., Cai D., Li Y., Gu N., Wu Z., Anal. Lett., 2013, 46, 912CrossRefGoogle Scholar
  29. [29]
    Bouabdalaoui L., Ouay B. Coradin L., Coradin T., Laberty-Robert C., International Journal of Electrochemistry, 2015, 2015(2), 1CrossRefGoogle Scholar
  30. [30]
    Wang D., Ke Y., Guo D., Guo H., Sensor. Actuat. B: Chem., 2015, 216, 504CrossRefGoogle Scholar
  31. [31]
    Jarczewska M., Kierzkowska E., Ziólkowski R., Górski L., Mali-nowska E., Bioelectrochemistry, 2014, 101, 35CrossRefPubMedGoogle Scholar
  32. [32]
    Yang D., Wang L., Chen Z., Megharaj M., Naidu R., Microchim. Ac-ta, 2014, 181(11/12), 1199CrossRefGoogle Scholar
  33. [33]
    Fan F., Dou J., Ding A., Zhang K., Wang Y., Analytical Sciences the International Journal of the Japan Society for Analytical Chemistry, 2013, 29(5), 571CrossRefPubMedGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Jing Nie
    • 1
  • Bin He
    • 1
  • Yanmei Cheng
    • 1
  • Wei Yin
    • 1
  • Changjun Hou
    • 2
  • Danqun Huo
    • 2
  • Linlin Qian
    • 1
  • Yunan Qin
    • 1
  • Huanbao Fa
    • 1
  1. 1.National-municipal Joint Engineering Laboratory for Chemical Process Intensification and Reaction, College of Chemistry and Chemical EngineeringChongqing UniversityChongqingP. R. China
  2. 2.Key Laboratory of Biorheology Science and Technology, Ministry of Education, College of BioengineeringChongqing UniversityChongqingP. R. China

Personalised recommendations