Advertisement

Chemical Research in Chinese Universities

, Volume 33, Issue 5, pp 779–784 | Cite as

Fluorine-free ionic liquid based on thiocyanate anion with propylene carbonate as electrolytes for supercapacitors: Effects of concentration and temperature

  • Lifeng Zhang
  • Suqing Du
  • Qiaolan Song
  • Yi Liu
  • Shouwu Guo
Article
  • 75 Downloads

Abstract

High performance supercapacitors were constructed using ionic liquid 1-ethyl-3-methylimidazolium thiocyanate(EmimSCN)-based electrolyte with chemically reduced graphene oxide(CRGO) as electrodes. Propylene carbonate(PC) was selected as the solvent due to its stable physical and electrochemical properties. Then, in-depth study of the concentration and temperature effects on the electrochemical properties of the EmimSCN/PC electrolyte was carried out. Electrochemical measurements revealed that 2.0 mol/L EmimSCN/PC electrolyte delivered good electrochemical performance(131 F/g of the specific capacity after 3000 cycles at room temperature). Moreover, the assembled supercapacitors exhibited good capacitive behavior at an extending temperature(397 F/g of the specific capacity after 3000 cycles at 50 °C), demonstrating that the EmimSCN/PC electrolyte is a promising candidate for safe high-power supercapacitors.

Keywords

Electrolyte Supercapacitor Ionic liquid Chemically reduced graphene oxide Capacitance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

40242_2017_7100_MOESM1_ESM.pdf (248 kb)
Fluorine-free ionic liquid based on thiocyanate anion with propylene carbonate as electrolytes for supercapacitors: effects of concentration and temperature

References

  1. [1]
    MacFarlane D. R., Tachikawa N., Forsyth M., Pringle J. M., Howlett P. C., Elliott G. D., Angell C. A., Energy Environ. Sci., 2014, 7, 232CrossRefGoogle Scholar
  2. [2]
    Huang Y., Liang J. J., Chen Y. S., Small, 2012, 8, 1805CrossRefGoogle Scholar
  3. [3]
    Georgakilas V., Tiwari J. N., Kemp K. C., Perman J. A., Bourlinos A. B., Kim K. S., Zbori R., Chem. Rev., 2016, 116, 5464CrossRefGoogle Scholar
  4. [4]
    Wang H. Z., Shi Y. L., Li Z. X., Zhang W. G., Yao S. W., Chem. Res. Chinese Universities, 2014, 30(4), 650CrossRefGoogle Scholar
  5. [5]
    Chen Z. X., Lu H. B., Chem. J. Chinese Universities, 2013, 34(9), 2020Google Scholar
  6. [6]
    Lei Z. B., Liu Z. H., Wang H. J., Sun X. X., Lu L., Zhao X. S., J. Mater. Chem. A, 2013, 1, 2313CrossRefGoogle Scholar
  7. [7]
    Vivekchand S., Rout C., Subrahmanyam K., Govindaraj A., Rao C., J. Chem. Sci., 2008, 120, 9CrossRefGoogle Scholar
  8. [8]
    Lin Z. F., Taberna P. L., Simon P., Electrochimica Acta, 2016, 206, 446CrossRefGoogle Scholar
  9. [9]
    Pohlmann S., Olyschläger T., Goodrich P., Vicente J. A., Jacquemin J., Balducci A., Electrochimica Acta, 2015, 153, 426CrossRefGoogle Scholar
  10. [10]
    Huang P. L., Luo X. F., Peng Y. Y., Pu N. W., Ger M. D., Yang C. H., Wu T. Y., Chang J. K., Electrochimica Acta, 2015, 161, 371CrossRefGoogle Scholar
  11. [11]
    Liu C. G., Yu Z. N., Neff D., Zhamu A., Jang B. Z., Nano Lett., 2010, 10, 4863CrossRefGoogle Scholar
  12. [12]
    Tooming T., Thomberg T., Kurig H., Jänes A., Lust E., J. Power Sources, 2015, 280, 667CrossRefGoogle Scholar
  13. [13]
    Liu W. W., Yan X. B., Lang J. W., Xue Q. J., J. Mater. Chem., 2012, 22, 8853CrossRefGoogle Scholar
  14. [14]
    Zhong C., Deng Y. D., Hu W. B., Qiao J. L., Zhang L., Zhang J. J., Chem. Soc. Rev., 2015, 44, 7484CrossRefGoogle Scholar
  15. [15]
    Leones R., Costa C. M., Machado A. V., Esperança J. M. S. S., Silva M. M., Lanceros Méndez S., Electroanal., 2014, 26, 1CrossRefGoogle Scholar
  16. [16]
    Mondal A., Balasubramanian S., J. Phys. Chem. B, 2015, 119, 11041CrossRefGoogle Scholar
  17. [17]
    Gonfa G., Bustam M. A., Muhammad N., Khan A. S., Ind. Eng. Chem. Res., 2015, 54, 12428CrossRefGoogle Scholar
  18. [18]
    Pringle J. M., Golding J., Forsyth C. M., Deacon G. B., Forsyth M., MacFarlane D. R., J. Mater. Chem., 2002, 12, 3475CrossRefGoogle Scholar
  19. [19]
    Chaban V., Chem. Phys. Lett., 2015, 618, 89CrossRefGoogle Scholar
  20. [20]
    Zhang Q. G., Zhang X. Y., Li M. C., Wu X. Y., Jin Z. X., Electronic Components and Materials, 2014, 33, 19Google Scholar
  21. [21]
    Chang J. K., Lee M. T., Tsai W. T., Deng M. J., Cheng H. F., Sun I. W., Langmuir, 2009, 25, 11955CrossRefGoogle Scholar
  22. [22]
    Zhang J. L., Yang H. J., Shen G. X., Cheng P., Zhang J. Y., Guo S. W., Chem. Commum., 2010, 46, 1112CrossRefGoogle Scholar
  23. [23]
    Fu R. R., Luo M., Ma Y. H., Yang S., Chem. J. Chinese Universities, 2016, 37(8), 1485Google Scholar
  24. [24]
    Lu W. J., Huang S. Z., Miao L., Liu M. X., Zhu D. Z., Li L. C., Duan H., Xu Z. J., Gan L. H., Chinese Chem. Lett., 2017, 28, 1324CrossRefGoogle Scholar
  25. [25]
    Li N., Lv T., Yao Y., Li H. L., Liu K., Chen T., J. Mater. Chem. A, 2017, 5, 3267CrossRefGoogle Scholar
  26. [26]
    Liu M. X., Ma X. M., Gan L. H., Xu Z. J., Zhu D. Z., Chen L. W., J. Mater. Chem. A, 2014, 2, 17107CrossRefGoogle Scholar
  27. [27]
    Elzbieta F., Phys. Chem. Chem. Phys., 2007, 9, 1774CrossRefGoogle Scholar
  28. [28]
    Lei Z. B., Christov N., Zhang L. L., Zhao X. S., J. Mater. Chem., 2011, 21, 2274CrossRefGoogle Scholar
  29. [29]
    Dagousset L., Nguyen G. T. M., Vidal F., Galindo C., Aubert P. H., RSC Advances, 2015, 5, 13095CrossRefGoogle Scholar
  30. [30]
    Kühnel R. S., Böckenfeld N., Passerini S., Winter M., Balducci A., Electrochimica Acta, 2011, 56, 4092CrossRefGoogle Scholar
  31. [31]
    Zhang L. L., Zhao X., Stoller M. D., Zhu Y., Ji H., Murali S., Wu Y., Perales S., Clevenger B., Ruoff R. S., Nano Lett., 2012, 12, 1806CrossRefGoogle Scholar
  32. [32]
    Liu W. W., Yan X. B., Lang J. W., Xue Q. J., J. Mater. Chem., 2011, 21, 13205CrossRefGoogle Scholar
  33. [33]
    Shi M. J., Kou S. Z., Yan X. B., Chem. Sus. Chem., 2014, 7, 3053CrossRefGoogle Scholar
  34. [34]
    Hung K., Masarapu C., Ko T., Wei B. Q., J. Power Sources, 2009, 193, 944CrossRefGoogle Scholar
  35. [35]
    Balducci A., Dugas R., Taberna P. L., Simon P., Plée D., Mastragos-tino M., Passerini S., J. Power Sources, 2007, 165, 922CrossRefGoogle Scholar
  36. [36]
    Lazzari M., Soavi F., Mastragostino M., J. Power Sources, 2008, 178, 490CrossRefGoogle Scholar
  37. [37]
    Anouti M., Timperman L., Elhilali M., Boisset A., Galiano H., J. Phys. Chem. C, 2012, 116, 9412CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringShaanxi University of Science and TechnologyXi’anP. R. China
  2. 2.Department of Electronic Engineering, School of Electronic Information and Electrical EngineeringShanghai Jiao Tong UniversityShanghaiP. R. China

Personalised recommendations