Advertisement

Chemical Research in Chinese Universities

, Volume 33, Issue 6, pp 1000–1006 | Cite as

Moisture absorption and mechanical properties of chemically modified linen/polypropylene composites

  • Qiuxue Hu
  • Li Li
  • Wenling Yan
  • Qi Zhao
  • Niaona Zhang
  • Yumei Zhang
  • Jinbiao Dong
  • Baijun Liu
  • Wei Hu
Article
  • 28 Downloads

Abstract

To decrease the moisture absorption and improve the mechanical properties of linen/polypropylene(PP) composites, linen was modified with silane N-[3-(trimethoxysilyl) propyl]ethylenediamine(AAPTS), surfactant tri-methyloctadecylammonium bromide(STAB), and both AAPTS and STAB, respectively. Fourier transform infrared(FTIR) spectra showed that the linen was successfully modified and alkyl chains were attached through different treatments. The linen and PP were compounded by melt compressing. The moisture absorption of linen was decreased after STAB and AAPTS-STAB modifications. The moisture absorption, mechanical property and thermal property of the composites were also characterized. The results show that the moisture absorption of the AAPTS-modified linen(F1) reinforced PP(PPF1) is 8.09%, which is higher than that of the unmodified linen reinforced PP(PPF)(7.89%). The moisture absorption of the STAB-AAPTS-modified linen(F3) reinforced PP(PPF3) is 6.58%. The tensile strengths of PPF1 and PPF3 are 33.7 and 35.8 MPa, which are improved by 22.5% and 30% compared with that of PPF(27.5 MPa), respectively. Nevertheless, the moisture absorption of the STAB-modified linen(F2) reinforced PP(PPF2) is decreased by 22.4%, and the tensile strength is improved by 30% compared with those of PPF. Scanning electron microscopy(SEM) analysis of the fractured surface confirms the good interfacial adhesion of PPF2 compared with those of other composites. Furthermore, the 5% mass loss temperatures of the composites are all higher than 290 °C. Thus, linen modified with STAB is a promising reinforcement for biocomposites.

Keywords

Linen Moisture absorption Surfactant Polypropylene Composite 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Zaman H. U., Beg M. D. H., Compos. Interfaces, 2016, 23(4), 281CrossRefGoogle Scholar
  2. [2]
    Khan A., Huq T., Saha M., Khan R. A., Khan M. A., J. Reinf. Plast. Compos., 2010, 29(20), 3125CrossRefGoogle Scholar
  3. [3]
    Kord B., Haratbar D. T., J. Thermoplast. Compos. Mater., 2014, 29(7), 8393Google Scholar
  4. [4]
    Li X., Tabil L. G., Panigrahi S., J. Polym. Environ., 2007, 15, 25CrossRefGoogle Scholar
  5. [5]
    Dangtungee R., Tengsuthiwat J., Boonyasopon P., Siengchin S., J. Thermoplast. Compos. Mater., 2014, 28(6), 879CrossRefGoogle Scholar
  6. [6]
    Huda M. S., Drzal L. T., Mohanty A. K., Misra M., Compos. Sci. Technol., 2008, 68, 424CrossRefGoogle Scholar
  7. [7]
    Cui H. W., Du G. B., Adv. Polym. Tech., 2012, 31(2), 130CrossRefGoogle Scholar
  8. [8]
    Leão R. M., Luz S. M., Araujo J. A., Novack K., J. Nat. Fibers., 2015, 12, 574CrossRefGoogle Scholar
  9. [9]
    Wu C. M., Lai W. Y., Wang C. Y., Materials, 2016, 9(5), 314CrossRefPubMedCentralGoogle Scholar
  10. [10]
    Izani M. A. N., Paridah M. T., Anwar U. M. K., MohdNor M. Y., H’ng P. S., Composites: Part B, 2013, 45, 1251CrossRefGoogle Scholar
  11. [11]
    Karina M., Onggo H., Abdullah A. H. D., Syampurwadi A., Asian J. Mater. Sci., 2009, 1(2), 45CrossRefGoogle Scholar
  12. [12]
    Zhou Y., Long C. G., Huang J. L., Deng Z. G., Cao T. S., J. Reinf. Plast. Comp., 2013, 32(18), 1348CrossRefGoogle Scholar
  13. [13]
    Abdelmouleh M., Boufi S., Belgacem M. N., Duarte A. P., Salah A. B., Gandini A., Int. J. Adhes. Adhes., 2004, 24, 43CrossRefGoogle Scholar
  14. [14]
    Arrakhiz F. Z., Achaby M. E., Kakou A. C., Vaudreuil S., Benmoussa K., Bouhfid R., Fassi-Fehri O., Qaiss A., Mater. Des., 2012, 37, 379CrossRefGoogle Scholar
  15. [15]
    Sgriccia N., Hawley M. C., Misra M., Composites: Part A, 2008, 39, 1632CrossRefGoogle Scholar
  16. [16]
    Akintayo C. O., Azeez M. A., Beuerman S., Akintayo E. T., J. Nat. Fibers., 2016, 13(5), 520CrossRefGoogle Scholar
  17. [17]
    Zhou F., Cheng G. X., Jiang B., Appl. Surf. Sci., 2014, 292, 806CrossRefGoogle Scholar
  18. [18]
    Rachini A., Troedec M. L., Peyratout C., Smith A., J. Appl. Polym. Sci., 2009, 112, 226CrossRefGoogle Scholar
  19. [19]
    Rachini A., Troedec M. L., Peyratout C., Smith A., J. Appl. Polym. Sci., 2012, 123, 601CrossRefGoogle Scholar
  20. [20]
    Abdelmouleh M., Boufi S., Belgacem M. N., Dufresne A., Compos. Sci. Technol., 2007, 67, 1627CrossRefGoogle Scholar
  21. [21]
    Wladyka-Przybylak M., Wesolek D., Rojewski S., Gasiorowski R., Gieparda W., Bujnowicz K., Maciejewski H., Wojcik R., Nowicki M., J. Biobased Mater. Bio., 2015, 9, 115CrossRefGoogle Scholar
  22. [22]
    Sreenivasan S., Ibraheem S. A., Sulaiman S., Baharudin B. T. H. T., Ariffin M. K. A., Abdan K., Adv. Mater. Res., 2014, 912―914, 1932CrossRefGoogle Scholar
  23. [23]
    Haque M. M. U., Maniruzzaman M., Reza M. S., J. Nat. Fibers., 2016, 13, 125CrossRefGoogle Scholar
  24. [24]
    Yang H. P., Yan R., Chen H. P., Lee D. H., Zheng C. G., Fuel, 2007, 86, 1781CrossRefGoogle Scholar
  25. [25]
    Rachini A., Mougin G., Delalande S., Charmeau J. Y., Barres C., Fleury E., Polym. Degrad. Stab., 2012, 97, 1988CrossRefGoogle Scholar
  26. [26]
    Kabir M. M., Wang H., Lau K. T., Cardona F., Appl. Surf. Sci., 2013, 276, 13CrossRefGoogle Scholar
  27. [27]
    Panaitescu D. M., Vuluga Z., Ghiurea M., Iorga M., Nicolae C., Ga-bor R., Composites: Part B, 2015, 69, 286CrossRefGoogle Scholar
  28. [28]
    Tonoli G. H. D., Belgacem M. N., Siqueira G., Bras J., Savastano H. Jr., Lahr F. A. R., Cem. Concr. Compos., 2013, 37, 68CrossRefGoogle Scholar
  29. [29]
    Pothan L. A., Thomas S. J. Appl. Polym. Sci., 2004, 91, 3856CrossRefGoogle Scholar
  30. [30]
    Law T. T., Ishak Z. A. M., J. Appl. Polym. Sci., 2011, 120, 563CrossRefGoogle Scholar
  31. [31]
    Haque M. M., Hasan M., Islam M. S., Ali M. E., Bioresour. Technol., 2009, 100, 4903CrossRefPubMedGoogle Scholar
  32. [32]
    Kushwaha P. K., Kumar P., J. Reinf. Plast. Compos., 2011, 30(1), 73CrossRefGoogle Scholar
  33. [33]
    Alvarez V. A., Vazquez A., Composites: Part A, 2006, 37, 1672CrossRefGoogle Scholar
  34. [34]
    Zhang Y., Wen B. Y., Cao L., Li X. Y., Zhang J. Y., J. Wuhan Univ. Technol., 2015, 30(1), 198CrossRefGoogle Scholar
  35. [35]
    Lee J. M., Ishak Z. A. M., Taib R. M., Law T. T., Thirmizir M. Z. A., J. Polym. Environ., 2013, 21, 293CrossRefGoogle Scholar
  36. [36]
    Jarukumjorn K., Suppakarn N., Composites: Part B., 2009, 40, 623CrossRefGoogle Scholar
  37. [37]
    Awal A., Ghosh S. B., Sain M., J. Therm. Anal. Calorim., 2010, 99, 695CrossRefGoogle Scholar
  38. [38]
    Arrakhiz F. Z., Achaby M. E., Malha M., Bensalah M. O., Fas-si-Fehri O., Bouhfid R., Benmoussa K., Qaiss A., Mater. Des., 2013, 43, 200CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Qiuxue Hu
    • 1
  • Li Li
    • 2
  • Wenling Yan
    • 1
  • Qi Zhao
    • 1
  • Niaona Zhang
    • 1
  • Yumei Zhang
    • 1
  • Jinbiao Dong
    • 1
  • Baijun Liu
    • 3
  • Wei Hu
    • 1
  1. 1.College of Chemical EngineeringChangchun University of TechnologyChangchunP. R. China
  2. 2.School of Life Science and TechnologyHarbin Institute of TechnologyHarbinP. R. China
  3. 3.College of ChemistryJilin UniversityChangchunP. R. China

Personalised recommendations