Advertisement

Chemical Research in Chinese Universities

, Volume 33, Issue 5, pp 833–838 | Cite as

Swelling process of thin polymer film studied via in situ spectroscopic ellipsometry

  • Lin Xu
  • Zhiming Zou
  • Huanhuan Zhang
  • Tongfei Shi
Article
  • 66 Downloads

Abstract

The swelling process of thin polystyrene films in quantity was studied in this paper using the in situ spectroscopic ellipsometry. We systematically investigated the influence of film thickness on the swelling process of thin polystyrene films. The results show that in the case of high M w polystyrene(M w=400000), the curve of the swelling degree as a function of time discloses that the relaxation of the long polymer chains accompanies the diffusion of acetone molecules. The swelling process is via the Fickian relaxation mechanism. Both the values of the equilibrium swelling degree and the diffusion coefficient of acetone molecules in the polystyrene film decrease as the film thickness reduces under confinement. However, in the case of low M w PS(M w=4100), the dewetting process is so fast before the equilibrium of swelling that the whole swelling process cannot be observed.

Keywords

Thin polymer film Solvent swelling Dewetting 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Li H., Wu Y. S., Wang X. D., Kong Q. H., Fu H. B., Chem. Commun., 2014, 50(75), 11000CrossRefGoogle Scholar
  2. [2]
    Pan L. J., Chortos A., Yu G. H., Wang Y. Q., Isaacson S., Allen R., Shi Y., Dauskardt R., Bao Z. N., Nat. Commun., 2014, 5, 3002Google Scholar
  3. [3]
    Gracias D. H., Curr. Opin. Chem. Eng., 2013, 2(1), 112CrossRefGoogle Scholar
  4. [4]
    de Blase C. R., Hernández-Burgos K., Rotter J. M., Fortman D. J., Abreu D. D. S., Timm R. A., Diógenes I. C. N., Kubota L. T., Héctor D., Abruña H. D., Dichtel W. R., Angew. Chem. Int. Edit., 2015, 54(45), 13225CrossRefGoogle Scholar
  5. [5]
    He Y. H., Hong W., Li Y. N., J. Mater. Chem. C, 2014, 2(41), 8651CrossRefGoogle Scholar
  6. [6]
    Ediger M. D., Forrest J. A., Macromolecules, 2014, 47(2), 471CrossRefGoogle Scholar
  7. [7]
    Vanroy B., Wübbenhorst M., Napolitano S., ACS Macro Lett., 2013, 2(2), 168CrossRefGoogle Scholar
  8. [8]
    Nguyen H. K., Fujinami S., Nakajima K., Polymer, 2016, 87, 114CrossRefGoogle Scholar
  9. [9]
    Tan A. W., Torkelson J. M., Polymer, 2016, 82, 327CrossRefGoogle Scholar
  10. [10]
    Sen M. N., Jiang N. S., Cheung J., Endoh M. K., Koga T., Kawaguchi D., Tanaka K., ACS Macro Lett., 2016, 5(4), 504CrossRefGoogle Scholar
  11. [11]
    Unni A. B., Vignaud G., Bal J. K., Delorme N., Beuvier T., Thomas S., Grohens Y., Gibaud A., Macromolecules, 2016, 49(5), 1807CrossRefGoogle Scholar
  12. [12]
    Balko J., Rinscheid A., Wurm A., Schick C., Lohwasser R. H., Thelakkat M., Thurn-Albrecht T., J. Polym. Sci. Part B: Polym. Phys., 2016, 54(18), 1791CrossRefGoogle Scholar
  13. [13]
    Asada M., Jiang N. S., Sendogdular L., Sokolov J., Endoh M. K., Koga T., Fukuto M., Yang L., Akgun B., Dimitriou M., Satija S., Soft Matter, 2014, 10(34), 6392CrossRefGoogle Scholar
  14. [14]
    Napolitano S., Wübbenhorst M., Nat. Commun., 2011, 2, 260CrossRefGoogle Scholar
  15. [15]
    Xu L., Zhang H. H., Shi T. F., Chem. J. Chinese Universities, 2016, 37(1), 174Google Scholar
  16. [16]
    Reiter G., Hamieh M., Damman P., Sclavons S., Gabriele S., Vilmin T., Raphaël E., Nat. Meter., 2005, 4(10), 754CrossRefGoogle Scholar
  17. [17]
    Roth C. B., Pye J. E., Baglay R. R., Polymer, Glasses, CRC Press, 2016, 181CrossRefGoogle Scholar
  18. [18]
    Yang Y. H., Bolling L., Priolo M. A., Grunlan J. C., Adv. Mater., 2013, 25(3), 503CrossRefGoogle Scholar
  19. [19]
    Buvailo A., Xing Y. J., Hines J., Borguet E., Sensor. Actuat. B, Chem., 2011, 156, 444CrossRefGoogle Scholar
  20. [20]
    Sharma S., Hussain S., Singh S., Islam S. S. Sensor. Actuat. B, Chem., 2014, 194, 213CrossRefGoogle Scholar
  21. [21]
    Nicolais L., Drioli E., Hopfenberg H. B., Tidone D., Polymer, 1977, 18, 1137CrossRefGoogle Scholar
  22. [22]
    Visser T., Wessling M., Macromolecules, 2007, 40(14), 4992CrossRefGoogle Scholar
  23. [23]
    Burgess S. K., Mikkilineni D. S., Yu D. B., Kim D. J., Mubarak C. R., Kriegel R. M., Koros W. J., Polymer, 2014, 55, 6861CrossRefGoogle Scholar
  24. [24]
    Burgess S. K., Mikkilineni D. S., Yu D. B., Kim D. J., Mubarak C. R., Kriegel R. M., Koros W. J., Polymer, 2014, 55, 6870CrossRefGoogle Scholar
  25. [25]
    Potreck J., Uyar F., Sijbesma H., Nijmeijer K., Stamatialis D., Wes-sling M., Phys. Chem. Chem. Phys., 2009, 11(2), 298CrossRefGoogle Scholar
  26. [26]
    Hopfenberg H. B., J. Membr. Sci., 1978, 3(1), 215CrossRefGoogle Scholar
  27. [27]
    Durning C. J., Hassan M. M., Tong H. M., Lee K. W., Macromole-cules, 1995, 28(12), 4234CrossRefGoogle Scholar
  28. [28]
    Okamoto K., Tanihara N., Watanabe H., Tanaka K., Kita H., Naka-mura A., Kusuki Y., Nakagawa K., J. Polym. Sci. Part B: Polym. Phys., 1992, 30(11), 1223CrossRefGoogle Scholar
  29. [29]
    Marcon V., van der Vegt N. F. A., Soft Matter, 2014, 10(45), 9059CrossRefGoogle Scholar
  30. [30]
    Ogieglo W., Wormeester H., Wessling M., Benes N. E., Macromol. Chem. Phys., 2013, 214(21), 2480CrossRefGoogle Scholar
  31. [31]
    Hori K., Matsuno H., Tanaka K., Soft Matter, 2011, 7(21), 10319CrossRefGoogle Scholar
  32. [32]
    Bal J. K., Beuvier T., Chebil M. S., Vignaud G., Grohens Y., Sanyal M. K., Gibaud A., Macromolecules, 2014, 47(24), 8738CrossRefGoogle Scholar
  33. [33]
    Gensel J., Dewald I., Erath J., Betthausen E., Müller A. H. E., Fery A., Chem. Sci., 2013, 4(1), 325CrossRefGoogle Scholar
  34. [34]
    Berens A. R., Polymer, 1977, 18, 697CrossRefGoogle Scholar
  35. [35]
    Chen W. L., Shull K. R., Papatheodorou T., Styrkas D. A., Keddie J. L., Macromolecules, 1999, 32(1), 136CrossRefGoogle Scholar
  36. [36]
    Ogieglo W., Wormeester H., Wessling M., Benes N. E., Polymer, 2013, 54, 341CrossRefGoogle Scholar
  37. [37]
    Berens A. R., Hopfenberg H. B., Polymer, 1978, 19, 489CrossRefGoogle Scholar
  38. [38]
    Zettl U., Knoll A., Tsarkova L., Langmuir, 2010, 26(9), 6610CrossRefGoogle Scholar
  39. [39]
    Forrest J. A., Dalnoki-Veress K., Dutcher J. R., Phys. Rev. E, 1997, 56(5), 5705CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Laboratory of Surface Physics and ChemistryGuizhou Education UniversityGuiyangP. R. China
  2. 2.Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and BioengineeringGuilin University of TechnologyGuilinP. R. China
  3. 3.State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunP. R. China
  4. 4.University of Chinese Academy of SciencesBeijingP. R. China

Personalised recommendations