Advertisement

Chemical Research in Chinese Universities

, Volume 33, Issue 5, pp 709–713 | Cite as

Development of a novel kilowatt microwave plasma torch source for atomic emission spectrometry

  • Dan Zhu
  • Wei Jin
  • Bingwen Yu
  • Yangwei Ying
  • Haixiang Yu
  • Jin Shan
  • Yuwei Yan
  • Chen Xu
  • Baolai Wang
  • Qinhan Jin
Article
  • 64 Downloads

Abstract

Traditional low power-microwave plasma torch(MPT) excitation source of atomic emission spectrometry was shown to be good for the introduction of dry aerosols, but poor for wet sample aerosols. In this work, some significant modifications have been made to traditional MPT. A new MPT excitation source working at kilowatt microwave power has been developed. The kilowatt MPT source can sustain stable plasmas with double or even more filaments, presenting a “bell” form, where the region around the converging point is the optimum region for analysis. The tolerance to aqueous aerosol of the torch is enhanced significantly compared to the traditional one. Therefore, the desolvation system that the low power MPT source has to be relied on can be gotten rid of. A set of favorable detection results have been obtained with direct wet sample aerosol introduction. The kilowatt MPT source is expected to become a practical excitation source for atomic emission spectrometry that will be widely used.

Keywords

Kilowatt microwave plasma torch Coupling structure Direct sample aerosol introduction Atomic emis-sion spectrometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors would like to thank HUANG Lichang, a staff of Zhejiang Supcon Co., Ltd., for the help of thermal field analysis.

References

  1. [1]
    Jankowski K. J., Reszke E., Microwave Induced Plasma Analytical Spectrometry, Royal Society of Chemistry, London, 2010, 51Google Scholar
  2. [2]
    van der Mullen J. J. A. M., van de Sande M. J., de Vries N., Broks B., Lordanova E., Gamero A., Torres J., Sola A., Spectrochim. Acta, Part B, 2007, 62(10), 1135CrossRefGoogle Scholar
  3. [3]
    Prokisch C., Bilgic A. M., Voges E., Broekaert J. A. C., Jonkers J., van Sande M., van der Mullen J. A. M., Spectrochim. Acta, Part B, 1999, 54(9), 1253CrossRefGoogle Scholar
  4. [4]
    Duan Y., Su Y., Jin Z., Abeln S. P., Rev. Sci. Instrum., 2000, 71(3), 1557CrossRefGoogle Scholar
  5. [5]
    Jin Q., Zhang H., Yang W., Jin Q., Shi Y., Talanta, 1997, 44(9), 1605CrossRefGoogle Scholar
  6. [6]
    Huan Y., Zhou J., Peng Z., Cao Y., Yu A., Zhang H., Jin Q., J. Anal. At. Spectrom., 2000, 15(10), 1409CrossRefGoogle Scholar
  7. [7]
    Duan Y., Su Y., Jin Z., Abeln S. P., Anal. Chem., 2000, 72(7), 1672CrossRefGoogle Scholar
  8. [8]
    Su Y., Jin Z., Duan Y., Koby M., Majidi V., Olivares J. A., Abeln S. P., Anal. Chim. Acta, 2000, 422(2), 209CrossRefGoogle Scholar
  9. [9]
    Feng G., Jiang J., Huan Y., Zheng J., Li M., Cao Y., Jin Q., Yu A., Chem. Res. Chinese Universities, 2006, 22(3), 297CrossRefGoogle Scholar
  10. [10]
    Feng G., Huan Y., Cao Y., Wang S., Wang X., Jiang J., Yu A., Jin Q., Yu H., Microchem. J., 2004, 76(1/2), 17CrossRefGoogle Scholar
  11. [11]
    Leins M., Kopecki J., Gaiser S., Schulz A., Walker M., Schumacher U., Stroth U., Hirth T., Contrib. Plasma Phys., 2014, 54(1), 14CrossRefGoogle Scholar
  12. [12]
    Okamoto Y., Yasuda M., Murayama S., Jpn. J. Appl. Phys., 1990, 29(4), 670CrossRefGoogle Scholar
  13. [13]
    Hammer M. R., Spectrochim. Acta, Part B, 2008, 63(4), 456CrossRefGoogle Scholar
  14. [14]
    Yu B., Jin W., Zhu D., Ying Y., Yu H., Shan J., Xu C., Liu W., Jin Q., Chem. Res. Chinese Universities, 2016, 32(4), 549CrossRefGoogle Scholar
  15. [15]
    Jin W., Yu B., Zhu D., Ying Y., Yu H., Jin Q., Chem. J. Chinese Uni-versities, 2015, 36(11), 2157Google Scholar
  16. [16]
    Bilgic A. M., Prokisch C., Broekaert J. A. C., Voges E., Spectrochim. Acta, Part B, 1998, 53(5), 773CrossRefGoogle Scholar
  17. [17]
    Huang M., Hanselman D. S., Jin Q., Hieftje G. M., Spectrochim. Acta, Part B, 1990, 45(12), 1339CrossRefGoogle Scholar
  18. [18]
    Jin Q., Zhu C., Borer M. W., Hieftje G. M., Spectrochim. Acta, Part B, 1991, 46B(3), 417CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Dan Zhu
    • 1
  • Wei Jin
    • 1
    • 2
  • Bingwen Yu
    • 1
  • Yangwei Ying
    • 1
  • Haixiang Yu
    • 1
  • Jin Shan
    • 1
  • Yuwei Yan
    • 1
  • Chen Xu
    • 2
  • Baolai Wang
    • 3
  • Qinhan Jin
    • 1
  1. 1.Research Center for Analytical Instrumentation, Institute of Cyber-systems and Control, College of Control and EngineeringZhejiang UniversityHangzhouP. R. China
  2. 2.Zhejiang Tracetech Technology Co., Ltd.HangzhouP. R. China
  3. 3.Hangzhou Steam Turbine Co., Ltd.HangzhouP. R. China

Personalised recommendations