Chemical Research in Chinese Universities

, Volume 33, Issue 5, pp 689–694 | Cite as

Insight into the reaction mechanism of graphene oxide with oxidative free radical

Article
  • 104 Downloads

Abstract

Graphene oxide(GO), as an important derivative of graphene, could be considered as a super aromatic molecule decorated with a range of reactive oxygen-containing groups on its surface, which endows graphene high reactivity with other molecules. In our previous work, we demonstrated that GO sheets were cut into small pieces(graphene quantum dots, GQDs) by oxidative free radicals(hydroxyl radical HO or oxygen radical [O]) under UV irradiation. It is notable that reactions involving free radicals are influenced by reaction conditions pronouncedly. However, researches on details about reactions of GO with free radicals have not been reported thus far. In this work, the effects of different factors on the photo-Fenton reaction of GO were studied. It is demonstrated that the reaction rate is closely related to the concentration of free radicals. It is speculated that through the optimization of reaction conditions, the reaction of graphene with free radicals could carry out efficiently for further applications.

Keywords

Graphene oxide Free radical Graphene quantum dot 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Qi P., Wang Z., Wang R., Xu Y., Zhang T., Chem. Res. Chinese Universities, 2016, 32(6), 924CrossRefGoogle Scholar
  2. [2]
    Karagiannidis P. G., Hodge S. A., Lombardi L., Tomarchio F., Decorde N., Milana S., Goykhman I., Su Y., Mesite S. V., Johnstone D. N., Leary R. K., Midgley P. A., Pugno N. M., Torrisi F., Ferrari A. C., ACS Nano, 2017, 11(3), 2742CrossRefGoogle Scholar
  3. [3]
    Zheng S., Li Z., Wu Z. S., Dong Y., Zhou F., Wang S., Fu Q., Sun C., Guo L., Bao X., ACS Nano, 2017, 11(4), 4009CrossRefGoogle Scholar
  4. [4]
    Geim A. K., Novoselov K. S., Nat. Mater., 2007, 6, 183CrossRefGoogle Scholar
  5. [5]
    Stankovich S., Dikin D. A., Dommett G. H. B., Kohlhaas K. M., Zimney E. J., Stach E. A., Piner R. D., Nguyen S. T., Ruoff R. S., Nature, 2006, 442(7100), 282CrossRefGoogle Scholar
  6. [6]
    Zhu Y., Murali S., Cai W., Li X., Suk J. W., Potts J. R., Ruoff R. S., Adv. Mater., 2010, 22(35), 3906CrossRefGoogle Scholar
  7. [7]
    Huang X., Yin Z., Wu S., Qi X., He Q., Zhang Q., Yan Q., Boey F., Zhang H., Small, 2011, 7(14), 1876CrossRefGoogle Scholar
  8. [8]
    Sun Y., Wu Q., Shi G., Energy Environ. Sci., 2011, 4(4), 1113CrossRefGoogle Scholar
  9. [9]
    Zhuo S., Shao M., Lee S.T., ACS Nano, 2012, 6, 1059CrossRefGoogle Scholar
  10. [10]
    Mueller M. L., Yan X., McGuire J. A., Li L. S., Nano Lett., 2010, 10(7), 2679CrossRefGoogle Scholar
  11. [11]
    Wu F., Xu F., Chen L., Jiang B., Sun W., Wei X., Chem. Res. Chinese Universities, 2016, 32(3), 468CrossRefGoogle Scholar
  12. [12]
    Jin Y. X., Jia W. P., Liang D. X., Li F., Li R. R., Zheng M. M., Gao W. Y., Ni J. M., Hu J. J., Wu T. H., Chem. J. Chinese Universities, 2017, 38(4), 653Google Scholar
  13. [13]
    Park S., Ruoff R. S., Nat. Nanotech., 2009, 4(4), 217CrossRefGoogle Scholar
  14. [14]
    Eda G., Chhowalla M., Adv. Mater., 2010, 22(22), 2392CrossRefGoogle Scholar
  15. [15]
    Compton O. C., Nguyen S. T., Small, 2010, 6(6), 711CrossRefGoogle Scholar
  16. [16]
    Zhou X., Zhang J., Wu H., Yang H., Zhang J., Guo S., J. Phys. Chem. C, 2011, 115, 11957CrossRefGoogle Scholar
  17. [17]
    Bourlinos A. B., Gournis D., Petridis D., Szabó T., Szeri A., Dékány I., Langmuir, 2003, 19, 6050CrossRefGoogle Scholar
  18. [18]
    Si Y., Samulski E., Nano Lett., 2008, 8, 1679CrossRefGoogle Scholar
  19. [19]
    Bekyarova E., Itkis M. E., Ramesh P., Berger C., Sprinkle M., Heer W. A., Haddon R. C., J. Am. Chem. Soc., 2009, 131, 1336CrossRefGoogle Scholar
  20. [20]
    Niyogi S., Bekyarova E., Itkis M. E., McWilliams J. L., Hamon M. A., Haddon R. C., J. Am. Chem. Soc., 2006, 128, 7720CrossRefGoogle Scholar
  21. [21]
    Zhou X., Zhang Y., Wang C., Wu X., Yang Y., Zheng B., Wu H., Guo S., Zhang J., ACS Nano, 2012, 6, 6592CrossRefGoogle Scholar
  22. [22]
    Zhou X., Guo S., Zhong P., Xie Y., Li Z., Ma X., RSC Adv., 2016, 6, 54644CrossRefGoogle Scholar
  23. [23]
    Ponomarenko L. A., Schedin F., Katsnelson M. I., Yang R., Hill E. W., Novoselov K. S., Geim A. K., Science, 2008, 320(5874), 356CrossRefGoogle Scholar
  24. [24]
    Ritter K. A., Lyding J., Nat. Mater., 2009, 8, 235CrossRefGoogle Scholar
  25. [25]
    Liu X. L., Hug D., Vandersypen L. M., Nano Lett., 2010, 10(5), 1623CrossRefGoogle Scholar
  26. [26]
    Shen J., Zhu Y., Yang X., Li C., Chem. Commun., 2012, 48(31), 3686CrossRefGoogle Scholar
  27. [27]
    Zhang Z., Zhang J., Chen N., Qu L., Energy Environ. Sci., 2012, 5(10), 8869CrossRefGoogle Scholar
  28. [28]
    Yan X., Cui X., Li B., Li L. S., Nano Lett., 2010, 10(5), 1869CrossRefGoogle Scholar
  29. [29]
    Liu Z., Robinson J. T., Sun X., Dai H., J. Am. Chem. Soc., 2008, 130, 10876CrossRefGoogle Scholar
  30. [30]
    Hong H., Yang K., Zhang Y., Engle J. W., Feng L., Yang Y., Nayak T. R., Goel S., Bean J., Theuer C. P., Barnhart T. E., Liu Z., Cai W., ACS Nano, 2012, 6, 2361CrossRefGoogle Scholar
  31. [31]
    Zhao J., Chen G., Zhu L., Li G., Electrochem. Commun., 2011, 13(1), 31CrossRefGoogle Scholar
  32. [32]
    Hou H., Banks C. E., Jing M., Zhang Y., Ji X., Adv. Mater., 2015, 27(47), 7861CrossRefGoogle Scholar
  33. [33]
    Tetsuka H., Nagoya A., Fukusumi T., Matsui T., Adv. Mater., 2016, 28(23), 4632CrossRefGoogle Scholar
  34. [34]
    Bai H., Jiang W., Kotchey G. P., Saidi W. A., Bythell B. J., Jarvis J. M., Marshall A. G., Robinson R. A., Star A., J. Phys. Chem. C, 2014, 118(19), 10519CrossRefGoogle Scholar
  35. [35]
    Cheng M. M., Ma W. H., Li J., Huang Y. P., Zhao J. C., Environ. Sci. Technol., 2004, 38, 1569CrossRefGoogle Scholar
  36. [36]
    Pera-Titus M., Garci´a-Molina V., Baños M. A., Giménez J., Esplugas S., Applied Catalysis B: Environmental, 2004, 47(4), 219CrossRefGoogle Scholar
  37. [37]
    Ikehata K., El-Din M. G., J. Environ. Eng. Sci., 2006, 5(2), 81CrossRefGoogle Scholar
  38. [38]
    Wang H., Tian H., Wang S., Zheng W., Liu Y., Mater. Lett., 2012, 78, 170CrossRefGoogle Scholar
  39. [39]
    Sun X., Luo D., Liu J., Evans D. G., ACS Nano, 2010, 4, 3381CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.School of Advanced Materials and NanotechnologyXidian UniversityXi’anP. R. China

Personalised recommendations