Advertisement

Chemical Research in Chinese Universities

, Volume 33, Issue 5, pp 839–846 | Cite as

Photo responsive silver nanoparticles incorporated liquid crystalline elastomer nanocomposites based on surface plasmon resonance

  • Jindi Zhang
  • Jun Wang
  • Lina Zhao
  • Wenlong Yang
  • Meng Bi
  • Yuchang Wang
  • Hongyan Niu
  • Yuxin Li
  • Binsong Wang
  • Yachen Gao
  • Chensha Li
  • Xuezhen Huang
Article
  • 83 Downloads

Abstract

We reported a nano-Ag/liquid crystalline elastomer(LCE) nanocomposite by incorporating silver nanoparticles into a monodomain polysiloxane-based LCE matrix via a novel experimental protocol. The photo-thermo-mechanical actuation of the LCE matrix was realized via the surface plasmon resonance of silver nanoparticles while converting light into heat. The photoresponsive properties of nano-Ag/LCE nanocomposites were investigated with varying illumination intensities and silver nanoparticle doping concentrations(0.04% to 0.2%, mass fraction). The nano-Ag/LCE nanocomposites show sensitive deformation under irradiation due to their excellent photo-thermal conversion efficiency, and this photostimulated muscle-like actuation is fully reversible via the on-off behavior of light. Incorporating silver nanoparticles into the LCE matrix also improves the mechanical properties and enhances the load-actuation capability of the material.

Keywords

Silver nanoparticle Liquid crystal elastomer Nanocomposite Photo-thermo-mechanical actuation Surface plasmon resonance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors thank XIE Mingchen and HUANG Shuai for their academic communications. We thank LetPub (www.letpub.com) for its linguistic assistance during the preparation of this manuscript.

Supplementary material

40242_2017_7067_MOESM1_ESM.mp4 (5.5 mb)
Supplementary material, approximately 5.53 MB.
40242_2017_7067_MOESM2_ESM.pdf (150 kb)
Photo Responsive Silver Nanoparticles Incorporated Liquid Crystalline Elastomer Nanocomposites Based on Surface Plasmon Resonance.

References

  1. [1]
    Warner M., Terentjev E. M., Liquid Crystal Elastomers, Oxford University Press, Oxford, 2007Google Scholar
  2. [2]
    Yang H., Ye G., Wang X., Keller P., Soft Matter, 2011, 7(3), 815CrossRefGoogle Scholar
  3. [3]
    Yu H., Ikeda T., Adv. Mater, 2011, 23(19), 2149CrossRefGoogle Scholar
  4. [4]
    Jiang H., Li C., Huang X., Nanoscale, 2013, 5(12), 5225CrossRefGoogle Scholar
  5. [5]
    Yu H., J. Mater. Chem. C, 2014, 2(17), 3047CrossRefGoogle Scholar
  6. [6]
    Ikeda T., Mamiya J. I., Yu Y., Angew. Chem., Int. Ed, 2007, 46(4), 506CrossRefGoogle Scholar
  7. [7]
    White T. J., Broer D. J., Nat. Mater, 2015, 14(11), 1087CrossRefGoogle Scholar
  8. [8]
    Ercole F., Davis T. P., Evans R. A., Polym. Chem, 2010, 1(1), 37CrossRefGoogle Scholar
  9. [9]
    van Oosten C. L., Bastiaansen C. W. M., Broer D. J., Nat. Mater, 2009, 8(8), 677CrossRefGoogle Scholar
  10. [10]
    Lee K. M., Smith M. L., Koerner H., Tabiryan N., Vaia R. A., Bun-ning T. J., White T. J., Adv. Funct. Mater., 2011, 21(15), 2913CrossRefGoogle Scholar
  11. [11]
    Yamada M., Kondo M., Mamiya J., Yu Y., Kinoshita M., Barrett C. J., Ikeda T., Angew. Chem. Int. Edit, 2008, 47(27), 4986CrossRefGoogle Scholar
  12. [12]
    Cheng F., Yin R., Zhang Y., Yen C. C., Yu Y., Soft Matter, 2010, 6(15), 3447CrossRefGoogle Scholar
  13. [13]
    Kohlmeyer R. R., Chen J., Angew. Chem. Int. Edit, 2013, 52(35), 9234CrossRefGoogle Scholar
  14. [14]
    Tang R., Liu Z. Y., Xu D. D., Liu J., Yu L., Yu H. F., ACS Appl. Mater. Interfaces, 2015, 7(16), 8393CrossRefGoogle Scholar
  15. [15]
    Zeng H., Martella D., Wasylczyk P., Cerretti G., Lavocat J. C. G., Ho C. H., Parmeggiani C., Wiersma D. S., Adv. Mater., 2014, 26(15), 2319CrossRefGoogle Scholar
  16. [16]
    Zeng H., Wasylczyk P., Parmeggiani C., Martella D., Burresi M., Wiersma D. S., Adv. Mater., 2015, 27(26), 3883CrossRefGoogle Scholar
  17. [17]
    Lv J. A., Liu Y. Y., Wei J., Chen E. Q., Qin L., Yu Y. L., Nature, 2016, 537, 179CrossRefGoogle Scholar
  18. [18]
    Yan C., Xiao Y. L., Dai H., Cheng X. H., Chem. J. Chinese Universi-ties, 2016, 37(3), 475Google Scholar
  19. [19]
    Zheng M. Y., Wei Y. S., Geng W., Chem. J. Chinese Universities, 2015, 36(5), 855Google Scholar
  20. [20]
    Yang L. Q., Setyowati K., Li A., Gong S. Q., Chen J., Adv. Mater., 2008, 20(12), 2271CrossRefGoogle Scholar
  21. [21]
    Ji Y., Huang Y. Y., Rungsawang R., Terentjev E. M., Adv. Mater., 2010, 22(31), 3436CrossRefGoogle Scholar
  22. [22]
    Marshall J. E., Ji Y., Torras N., Zinoviev K., Terentjev E. M., Soft Matter, 2012, 8(5), 1570CrossRefGoogle Scholar
  23. [23]
    Li C. S., Liu Y., Lo C. W., Jiang H. R., Soft Matter, 2011, 7(16), 7511CrossRefGoogle Scholar
  24. [24]
    Camargo C. J., Campanella H., Marshall J. E., Torras N., Zinoviev K., Terentjev E. M., Esteve J., Macromol. Rapid Commun., 2011, 32(24), 1953CrossRefGoogle Scholar
  25. [25]
    Li C. S., Liu Y., Huang X. Z., Jiang H. R., Adv. Funct. Mater., 2012, 22(24), 5166CrossRefGoogle Scholar
  26. [26]
    Kohlmeyer R. R., Chen J., Angew. Chem. Int. Edit, 2013, 52(35), 9234CrossRefGoogle Scholar
  27. [27]
    Li C. S., Liu Y., Huang X. Z., Li C. H., Jiang H. R., Mol. Cryst. Liq. Cryst., 2015, 616(1), 83CrossRefGoogle Scholar
  28. [28]
    Zou W. Q., Huang X. Z., Li Q. K., Guo L. C., Li C. S., Jiang H. R., Mol. Cryst. Liq. Cryst., 2016, 631(1), 9CrossRefGoogle Scholar
  29. [29]
    Wang M., Sayed S. M., Guo L. X., Lin B. P., Zhang X. Q., Sun Y., Yang H., Macromolecules, 2016, 49, 663CrossRefGoogle Scholar
  30. [30]
    Marshall J. E., Terentjev E. M., Soft Matter, 2013, 9(35), 8547CrossRefGoogle Scholar
  31. [31]
    Guo L., Liu M., Sayed M. S., Lin B., Keller P., Zhang X., Sun Y., Yang H., Chem. Sci., 2016, 7(7), 4400CrossRefGoogle Scholar
  32. [32]
    Liu W., Guo L. X., Lin B. P., Zhang X. Q., Sun Y., Yang H., Macro-molecules, 2016, 49(11), 4023CrossRefGoogle Scholar
  33. [33]
    Vigderman L., Khanal B. P., Zubarev E. R., Adv. Mater., 2012, 24(36), 4811CrossRefGoogle Scholar
  34. [34]
    Olson J., Medina S. D., Hoggard A., Wang L., Chang W., Link S., Chem. Soc. Rev., 2015, 44(1), 40CrossRefGoogle Scholar
  35. [35]
    Xue P. H., Wang T. Q., Ai B., Ye S. S., Li D. F., Zhang J. H., Chem. J. Chinese Universities, 2014, 35(5), 1106Google Scholar
  36. [36]
    Huang X. H., Jain P. K., El-Sayed I. H., El-Sayed M. A., Lasers. Med. Sci, 2008, 23(3), 217CrossRefGoogle Scholar
  37. [37]
    Liu X., Li R. Z., Li L., Li W. J., Zhou C. J., Chem. J. Chinese Uni-versities, 2013, 34(6), 1333Google Scholar
  38. [38]
    Sun Y., Evans J. S., Lee T., Senyuk B., Keller P., He S., Smalyukh I. I., Appl. Phys. Lett, 2012, 100(24), 241901CrossRefGoogle Scholar
  39. [39]
    Evans J. S., Sun Y., Senyuk B., Keller P., Pergamenshchik V. M., Lee T., Smalyukh I. I., Phys. Rev. Lett, 2013, 110(18), 187802CrossRefGoogle Scholar
  40. [40]
    Yang H., Liu J. J., Wang Z. F., Guo L. X., Keller P., Lin B. P., Sun Y., Zhang X. Q., Chem. Commun, 2015, 51(60), 12126CrossRefGoogle Scholar
  41. [41]
    Liu X., Wei R., Hoang P. T., Wang X., Liu T., Keller P., Adv. Funct. Mater., 2015, 25(20), 3022CrossRefGoogle Scholar
  42. [42]
    Kreibig U., Vollmer M., Optical Properties of Metal Clusters, Sprin-ger, Berlin, 1995CrossRefGoogle Scholar
  43. [43]
    Mogensen K. B., Kneipp K., J. Phys. Chem. C, 2014, 118(48), 28075CrossRefGoogle Scholar
  44. [44]
    Kamakshi K., Sekhar K. C., Almeida A., Moreira J. A., Gomes M. J. M., J. Opt., 2014, 16(5), 915CrossRefGoogle Scholar
  45. [45]
    Yun S., Hong S., Acapulco J. A. I., Jang H. Y., Ham S., Lee K., Kim S. K., Park S., Chem. Eur. J., 2015, 21(16), 6165CrossRefGoogle Scholar
  46. [46]
    Ji Y., Marshall J. E., Terentjev E. M., Polymers, 2012, 4(1), 316CrossRefGoogle Scholar
  47. [47]
    Liff S. M., Kumar N., Mckinley G. H., Nat. Mater., 2007, 6(1), 76CrossRefGoogle Scholar
  48. [48]
    Xiao Z., Wu Q., Luo S., Zhang C., Baur J., Justice R., Liu T., Part. Part. Syst. Charact., 2013, 30(4), 338CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Jindi Zhang
    • 1
    • 2
  • Jun Wang
    • 3
  • Lina Zhao
    • 4
  • Wenlong Yang
    • 5
  • Meng Bi
    • 1
    • 2
  • Yuchang Wang
    • 1
    • 2
  • Hongyan Niu
    • 1
    • 2
  • Yuxin Li
    • 2
  • Binsong Wang
    • 1
  • Yachen Gao
    • 3
  • Chensha Li
    • 2
  • Xuezhen Huang
    • 6
  1. 1.Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion, School of Chemistry and Material SciencesHeilongjiang UniversityHarbinP. R. China
  2. 2.Key Laboratory of Functional Inorganic Material Chemistry, Ministry of EducationHeilongjiang UniversityHarbinP. R. China
  3. 3.Key Laboratory of Electronics Engineering of College of Heilongjiang ProvinceHeilongjiang UniversityHarbinP. R. China
  4. 4.Department of Food and Environmental EngineeringEast University of HeilongjiangHarbinP. R. China
  5. 5.Department of Applied ScienceHarbin University of Science and TechnologyHarbinP. R. China
  6. 6.R & D Department of Silatronix Inc.University of Wisconsin-MadisonMadisonUSA

Personalised recommendations