Chemical Research in Chinese Universities

, Volume 33, Issue 5, pp 785–793 | Cite as

Density functional theoretical studies on effect of intramolecular hydrogen bonds on reduction of nitrophenols

  • Hongmei Zhang
  • Yan Liu
  • Fangping Ma
  • Wei Qiu
  • Bo Lei
  • Jinyou Shen
  • Xiuyun Sun
  • Weiqing Han
  • Jiansheng Li
  • Lianjun Wang
Article
  • 37 Downloads

Abstract

Intramolecular hydrogen bonds(IMHBs) can lead to different physicochemical characteristics of nitrophenols(NPs) that determine their environmental behavior. In the present work, to reveal the relationship between IMHB and nitrophenol reduction, the effects of IMHB on the molecular geometries and properties of a series of nitrophenols were investigated with density functional theory(DFT) calculations. The results of the geometry optimization and atoms-in-molecules(AIM) analysis indicate relatively strong IMHBs in ortho-substituted nitrophenols, whose stability could be significantly improved. In comparing the E LUMO and adiabatic electron affinities(AEA) of the nitrophenol isomers, the presence of IMHBs benefited the reductive degradation of NPs, consistent with a previous study. To gain an insight into the effect mechanism of IMHBs on the reductive degradation behavior of these molecules, the condensed electrophilicity Fukui index(f ), natural charges and Wiberg bond orders of these nitrophenol isomers were calculated. The calculations indicate that the electrophilic reactivity activity of the O atom on the nitro group could be significantly improved due to the formation of IMHBs, which results in the enhanced reductive degradation of ortho-substituted NPs.

Keywords

Nitrophenol Reduction Intramolecular hydrogen bond Effect mechanism Density functional theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

40242_2017_7066_MOESM1_ESM.pdf (390 kb)
Supplementary material, approximately 390 KB.

References

  1. [1]
    Dieckmann M. S., Gray K. A., Water Res., 1996, 30(5), 1169CrossRefGoogle Scholar
  2. [2]
    Gutes A., Cespedes F., Alegret S., Del Valle M., Biosens. Bioelectron., 2005, 20(8), 1668CrossRefGoogle Scholar
  3. [3]
    Belloli R., Bolzacchini E., Clerici L., Rindone B., Sesana G., Li-brando V., Environ. Eng. Sci., 2006, 23(2), 405CrossRefGoogle Scholar
  4. [4]
    Cañzares P., Lobato J., Paz R., Rodrigo M. A., Sáez C. Water Res., 2005, 39(12), 2687CrossRefGoogle Scholar
  5. [5]
    Bo L., Quan X., Chen S., Zhao H., Zhao Y., Water Res., 2006, 40(16), 3061CrossRefGoogle Scholar
  6. [6]
    Ye M., Chen Z., Wang W., Shen J., Ma J., J. Hazard. Mater., 2010, 184(1—3), 612CrossRefGoogle Scholar
  7. [7]
    Essam T., Amin M. A., Tayeb O. E., Mattiassion B., Guieysse B., Water Res., 2007, 41(8), 1697CrossRefGoogle Scholar
  8. [8]
    She Z. L., Xie T., Zhu Y. J., Tang G. F., Huang J., J. Hazard. Mater., 2012, 241, 478CrossRefGoogle Scholar
  9. [9]
    Kulkarni M., Chaudhari A., Bioresour. Technol., 2006, 97(8), 982CrossRefGoogle Scholar
  10. [10]
    Arora P. K., Srivastava A., Singh V. P., J. Hazard. Mater., 2014, 266, 42CrossRefGoogle Scholar
  11. [11]
    Ou C. J., Zhang S., Liu J. G., Shen J. Y., Liu Y., Sun X. Y., Li J. S., Wang L. J., Phys. Chem. Chem. Phys., 2015, 17(34), 22072CrossRefGoogle Scholar
  12. [12]
    Yuan S. H., Tian M., Cui Y. P., Lin L., Lu X. H., J. Hazard. Mater., 2006, 137(1), 573CrossRefGoogle Scholar
  13. [13]
    Shen J. Y., Xu X. P., Jiang X. B., Hua C. X., Zhang L. B., Sun X. Y., Li J. S., Mu Y., Wang L. J., Water Res., 2014, 67, 11CrossRefGoogle Scholar
  14. [14]
    Dai R. R., Chen J., Lin J., Xiao S. Y., Chen S., Deng Y. L., J. Hazard. Mater., 2009, 170, 141CrossRefGoogle Scholar
  15. [15]
    Wu C. K., An X. Y., Gao S. Y., Su L., RSC Adv., 2015, 5(87), 71259CrossRefGoogle Scholar
  16. [16]
    Goyal A., Bansal S., Singhal S., Int. J. Hydrogen. Energ., 2014, 39(10), 4895CrossRefGoogle Scholar
  17. [17]
    Chua C. K., Martin P., Lubomír R., J. Phys. Chem. C, 2012, 116(6), 4243CrossRefGoogle Scholar
  18. [18]
    Shen J. Y., Zhang Y. Y., Xu X. P., Hua C. X., Sun X. Y., Li J. S., Mu Y., Wang L. J., Water Res., 2013, 47(15), 5511CrossRefGoogle Scholar
  19. [19]
    Jiang X. B., Shen J. Y., Lou S., Mu Y., Wang N., Han W. Q., Sun X. Y., Li J. S., Wang L. J., Bioresource. Technol., 2016, 216, 645CrossRefGoogle Scholar
  20. [20]
    Estacio S. G., do Couto P. C., Cabral B. J. C., da Piedade M. E. M., Simoes J. A. M., J. Phys. Chem. A, 2004, 108(49), 10834CrossRefGoogle Scholar
  21. [21]
    Zhao G. J., Han K. L., J. Phys. Chem. A, 2009, 113(52), 14329CrossRefGoogle Scholar
  22. [22]
    Cui G. L., Lan Z. G., Thiel W., J. Am. Chem. Soc., 2012, 134(3), 1662CrossRefGoogle Scholar
  23. [23]
    Chen P. C., Tzeng S. C., J. Mol. Struct.(Theochem), 1999, 467(3), 243CrossRefGoogle Scholar
  24. [24]
    Heintz A., Kapteina S., Verevkin S. P., J. Phys. Chem. A, 2007, 111(28), 6552CrossRefGoogle Scholar
  25. [25]
    Vasile C., Chemical Physics, 2004, 300(1—3), 1Google Scholar
  26. [26]
    Filarowski A., Kochel A., Koll A., Bator G., Mukherjee S., J. Mol. Struct., 2006, 785(1—3), 7CrossRefGoogle Scholar
  27. [27]
    Yan X. F., Xiao H. M., Gong X. D., Ju X. H., Chemosphere, 2005, 59(4), 467CrossRefGoogle Scholar
  28. [28]
    Litwinienko G., DiLabio G. A., Mulder P., Korth H. G., Ingold K. U., J. Phys. Chem. A, 2009, 113(22), 6275CrossRefGoogle Scholar
  29. [29]
    Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Peters-son G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmay-lov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J. A. Jr., Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staro-verov V. N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam M. J., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Dapprich S., Daniels A. D., Farkas O., Foresman J. B., Ortiz J. V., Cioslowski J., Gaussian 09. Revision B.01, Gaussian Inc, Wallingford, 2009 Google Scholar
  30. [30]
    Biegler-Konig F., Schonbohm J., Derdau R., Bayles D., Bader R. F. W., AIM2000, Version 1, Büro für Innovative Software, Bielefeld, 2000 Google Scholar
  31. [31]
    Espinosa E., Molins E., Lecomte C., Chem. Phys. Lett., 1998, 285(3/4), 170CrossRefGoogle Scholar
  32. [32]
    Liu H. N., Walker L. A., Doerksen R. J., Chem. Res. Toxicol., 2011, 24(9), 1476CrossRefGoogle Scholar
  33. [33]
    Thanikaivelan P., Padmanabhan J., Subramanian V., Ramasami T., Theor. Chem. Acc., 2002, 107(6), 326CrossRefGoogle Scholar
  34. [34]
    Koch U., Popelier P. L. A., J. Phys. Chem., 1995, 99, 9747CrossRefGoogle Scholar
  35. [35]
    Nazarparvar E., Zahedi M., Klein E., J. Org. Chem., 2012, 77(22), 10093CrossRefGoogle Scholar
  36. [36]
    Han J., Deming R. L., Tao F. M., J. Phys. Chem. A, 2004, 108(38), 7736CrossRefGoogle Scholar
  37. [37]
    Tratnyek P. G., Weder E. J., Schwarzenbach R. P., Environ. Toxicol. Chem., 2003, 22(8), 1733CrossRefGoogle Scholar
  38. [38]
    Colón D., Weber E. J., Anderson J. L., Environ. Sci. Technol., 2006, 40(16), 4976CrossRefGoogle Scholar
  39. [39]
    She L. Z., Yu J. W., Jin C. J., J. Environ. Sci. China, 2004, 25(4), 82Google Scholar
  40. [40]
    Hilal S. H., Carreira L. A., Karickhoff S. W., Melton C. M., Quant. Struct.-Act. Relat., 1993, 12(4), 389CrossRefGoogle Scholar
  41. [41]
    Wei T., Zhu W. H., Zhang J. J., Xiao H. M., J. Hazard. Mater., 2010, 179(1—3), 581CrossRefGoogle Scholar
  42. [42]
    Chen Z. X., Xiao J. M., Xiao H. M., Chiu Y. N., J. Phys. Chem. A, 1999, 103(40), 8062CrossRefGoogle Scholar
  43. [43]
    Hammes-Schiffer S., Stuchebrukhov A. A., Chem. Rev., 2010, 110(12), 6939CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Hongmei Zhang
    • 1
  • Yan Liu
    • 1
  • Fangping Ma
    • 2
  • Wei Qiu
    • 2
  • Bo Lei
    • 2
  • Jinyou Shen
    • 1
  • Xiuyun Sun
    • 1
  • Weiqing Han
    • 1
  • Jiansheng Li
    • 1
  • Lianjun Wang
    • 1
  1. 1.Jiangsu Key Laboratory for Chemical Pollution Control and Resource Reuse, School of Environmental and Biological EngineeringNanjing University of Science and TechnologyNanjingP. R. China
  2. 2.Chuannan Machinery FactoryChina Aerospace Science and Technology CorporationLuzhouP. R. China

Personalised recommendations