Advertisement

Chemical Research in Chinese Universities

, Volume 33, Issue 6, pp 958–964 | Cite as

Circular cationic compounds B3Rg n + of triangular ion B3+ trapping rare gases

  • Ruiwen Zhang
  • Anyong Li
  • Zhuozhe Li
Article
  • 24 Downloads

Abstract

The circular cationic compounds B3Rg n +(n=1—3, Rg=He—Rn) formed by the electron-deficient aromatic ion B3+ trapping rare gases were studied theoretically. The formed B—Rg bond has large bonding energy in the range of 60—209 kJ/mol, its length is close to the sum of covalent radii of B and Rg, for Ar—Rn. The analyses based on the natural bond orbitals and electron density topology show that the B—Rg bonds for Ar—Rn have strong covalent character. The geometric structures, binding energy, bond nature and thermodynamic stability of the boron-rare gas compounds show that these species for Ar—Rn may be experimentally available. Several different theoretical studies have demonstrated that these triangular cations are aromatic.

Keywords

B3Rgn+ Aromaticity B3LYP MP2 def2-QZVPPD 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

40242_2017_7054_MOESM1_ESM.pdf (1018 kb)
Circular Cationic Compounds B3Rgn+ of the Triangular Ion B3+ Trapping Rare Gases

References

  1. [1]
    Pauling L., J. Am. Chem. Soc., 1933, 55(5), 1895CrossRefGoogle Scholar
  2. [2]
    Bartlett N., Xenon Hexafluoroplatinate(V) Xe + [PtF 6 ] , Proceedings of the Chemical Society of London, London, 1962, 218Google Scholar
  3. [3]
    Thompson C. A., Andrews L., J. Am. Chem. Soc., 1994, 116(1), 423CrossRefGoogle Scholar
  4. [4]
    Khriachtchev L., Pettersson M., Runeberg N., Lundell J., Räsänen M., Nature, 2000, 406(6798), 874CrossRefPubMedGoogle Scholar
  5. [5]
    Li J., Bursten B. E., Liang B., Andrews L., Science, 2002, 295(5563), 2242CrossRefPubMedGoogle Scholar
  6. [6]
    Jayasekharan T., Ghanty T. K., J. Chem. Phys., 2006, 125(23), 234106CrossRefPubMedGoogle Scholar
  7. [7]
    Khriachtchev L., Isokoski K., Cohen A., Räsänen M., Gerber R. B., J. Am. Chem. Soc., 2008, 130(19), 6114CrossRefPubMedGoogle Scholar
  8. [8]
    Li Z. Z., Li A.Y., Ji L. F., J. Phys. Chem. A, 2015, 119(30), 8400CrossRefPubMedGoogle Scholar
  9. [9]
    Khriachtchev L., Tanskanen H., Lundell J., Pettersson M., Kiljunen H., Räsänen M., J. Am. Chem. Soc., 2003, 125(16), 4696CrossRefPubMedGoogle Scholar
  10. [10]
    Khriachtchev L., Tanskanen H., Cohen A., Gerber R. B., Lundell J., Pettersson M., Kiljunen H., Räsänen M., J. Am. Chem. Soc., 2003, 125(23), 6876CrossRefPubMedGoogle Scholar
  11. [11]
    Li T. H., Mou C. H., Chen H. R., Hu W. P., J. Am. Chem. Soc., 2005, 127(25), 9241CrossRefPubMedGoogle Scholar
  12. [12]
    Antoniotti P., Borocci S., Bronzolino N., Cecchi P., Grandinetti F., J. Phys. Chem. A, 2007, 111(40), 10144CrossRefPubMedGoogle Scholar
  13. [13]
    Pauzat F., Ellinger Y., Planet. Space. Sci., 2005, 53(13), 1389CrossRefGoogle Scholar
  14. [14]
    Pauzat F., Ellinger Y., J. Chem. Phys., 2007, 127(1), 014308CrossRefPubMedGoogle Scholar
  15. [15]
    Pauzat F., Ellinger Y., Pilmé J., Mousis O., J. Chem. Phys., 2009, 130(17), 174313CrossRefPubMedGoogle Scholar
  16. [16]
    Chakraborty A., Giri S., Chattaraj P. K., New J. Chem., 2010, 34(9), 1936CrossRefGoogle Scholar
  17. [17]
    Kupfer T., Braunschweig H., Radacki K., Angew. Chem. Int. Edit., 2015, 54(50), 15084CrossRefGoogle Scholar
  18. [18]
    Hernandez R., Simons J., J. Chem. Phys., 1991, 94(4), 2961CrossRefGoogle Scholar
  19. [19]
    Becke A. D., J. Chem. Phys., 1993, 98(2), 1372CrossRefGoogle Scholar
  20. [20]
    Lee C., Yang W., Parr R. G., Phys. Rev. B, 1988, 37(2), 785CrossRefGoogle Scholar
  21. [21]
    Frisch M. J., Head-Gordon M., Pople J. A., Chem. Phy. Lett., 1990, 166(3), 275CrossRefGoogle Scholar
  22. [22]
    Rappoport D., Furche F., J. Chem. Phys., 2010, 133(13), 134105CrossRefPubMedGoogle Scholar
  23. [23]
    Peterson K. A., Figgen D., Goll E., Stoll H., Dolg M., J. Chem. Phys., 2003, 119(21), 11113CrossRefGoogle Scholar
  24. [24]
    Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Peters-son G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmay-lov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J. A., Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staro-verov V. N., Keith T., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam J. M., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Dapprich S., Daniels A. D., Farkas O., Foresman J. B., Ortiz J. V., Cioslowski J., Fox D. J., Gaussian 09, Gaussian Inc., Wallingford CT, 2013 Google Scholar
  25. [25]
    Reed A. E., Weinhold F., Curtiss L. A., Pochatko D. J., J. Chem. Phys., 1986, 84(10), 5687CrossRefGoogle Scholar
  26. [26]
    Reed A. E., Curtiss L. A., Weinhold F., Chem. Rev., 1988, 88(6), 899CrossRefGoogle Scholar
  27. [27]
    Bader R. F. W., Atoms in Molecules: A Quantum Theory, Claerndon Press, Oxford, 1990Google Scholar
  28. [28]
    Lu T., Chen F. W., J. Comput. Chem., 2012, 33(5), 580CrossRefGoogle Scholar
  29. [29]
    Zubarev D. Y., Boldyrev A. I., Phys. Chem. Chem. Phys., 2008, 10(34), 5207CrossRefPubMedGoogle Scholar
  30. [30]
    von Ragué Schleyer P., Maerker C., Dransfeld A., Jiao H., van Eike-ma Hommes N. J. R., J. Am. Chem. Soc., 1996, 118(26), 6317CrossRefGoogle Scholar
  31. [31]
    Ponec R., Mayer I., J. Phys. Chem. A, 1997, 101(9), 1738CrossRefGoogle Scholar
  32. [32]
    Noorizadeh S., Shakerzadeh E., Phys. Chem. Chem. Phys., 2010, 12(18), 4742CrossRefPubMedGoogle Scholar
  33. [33]
    Cordero B., Gómez V., Platero-Prats A. E., Revés M., Echeverría J., Cremades E., Barragán F., Alvarez S., Dalton Trans., 2008, (21), 2832CrossRefGoogle Scholar
  34. [34]
    Grandinetti F., Nat. Chem., 2013, 5(5), 438CrossRefPubMedGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringSouthwest UniversityChongqingP. R. China

Personalised recommendations