Advertisement

Chemical Research in Chinese Universities

, Volume 33, Issue 6, pp 965–970 | Cite as

Facile synthesis of mesoporous Co3O4 nanoflowers for catalytic combustion of ventilation air methane

  • Shankui Liu
  • Pengcheng Liu
  • Ruyue Niu
  • Shuang Wang
  • Jinping Li
Article
  • 42 Downloads

Abstract

Flower-like Co3O4 hierarchical microspheres composed of self-assembled porous nanoplates were prepared by employing Pluronic F127 block-copolymer as template. The samples were characterized by powder X-ray diffraction(PXRD), scanning/transmission electron microscopy(SEM/TEM), and nitrogen adsorption-desorption at 77 K. The results show that the catalytic activity of Co3O4 nanoflowers for the combustion of ventilation air methane is higher than that of commercial Co3O4. The superior catalytic performance of this material can be related to its dominantly exposed {112} crystal planes and higher content of surface Co3+.

Keywords

Co3O4 Nanoflowers Catalytic combustion Ventilation air methane 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Guo T. Y., Du J. P., Wu J. T., Wang S., Li J. P., Chem. Eng. J., 2016, 306, 745CrossRefGoogle Scholar
  2. [2]
    Fernández J., Marín P., Díez F. V., Ordóñez S., Fuel Process. Tech-nol., 2015, 133, 202CrossRefGoogle Scholar
  3. [3]
    Cargnello M., Delgado Jaén J. J., Hernández Garrido J. C., Bakh-mutsky K., Montini T., Gorte Gámez J. J., Gorte R. J., Fornasiero P., Science, 2012, 337, 713CrossRefPubMedGoogle Scholar
  4. [4]
    Ren J., Xie C. J., Guo X., Qin Z. F., Lin J. Y., Li Z., Energ. Fuels, 2014, 28, 3688CrossRefGoogle Scholar
  5. [5]
    Guo T. Y., Du J. P., Wu J. T., Li J. P., Appl. Catal. A: Gen., 2016, 524, 237CrossRefGoogle Scholar
  6. [6]
    Setiawan A., Friggieri J., Kennedy E. M., Dlugogorskiac B. Z., Stockenhuber M., Catal. Sci. Technol., 2014, 4, 1793CrossRefGoogle Scholar
  7. [7]
    Răciulete M., Layrac G., Tichit D., Marcu I. C., Appl. Catal. A: Gen., 2014, 477, 195CrossRefGoogle Scholar
  8. [8]
    Gholami R., Smith K.J., Appl. Catal. B: Environ., 2015, 168/169, 156CrossRefGoogle Scholar
  9. [9]
    Lim T. H., Cho S. J., Yang H. S., Engelhard M. H., Kim D. H., Appl. Catal. A: Gen., 2015, 505, 62CrossRefGoogle Scholar
  10. [10]
    Su S., Chen H. W., Teakle P., Xue S., J. Environ. Management, 2008, 86, 44CrossRefGoogle Scholar
  11. [11]
    Guo T. Y., Du J. P., Wang S., Wu J. T., Li J. P., Chem. Res. Chinese Universities, 2016, 32(5), 843CrossRefGoogle Scholar
  12. [12]
    Yang Z., Liu J., Zhang L., Zheng S., Guo M., Yan Y., RSC Adv., 2014, 4, 39394CrossRefGoogle Scholar
  13. [13]
    Shen J., Hayes R. E., Wu X. X., Semagina N., ACS Catal., 2015, 5, 2916CrossRefGoogle Scholar
  14. [14]
    Nilsson J., Carlsson P. A., Fouladvand S., Martin N. M., Gustafson J., Newton M. A., Lundgren E., Grönbeck H., Skoglundh M., ACS Catal., 2015, 5(4), 2481CrossRefGoogle Scholar
  15. [15]
    Chen C., Yeh Y. H., Cargnello M., Murray C. B., Fornasiero P., Gorte R. J., ACS Catal., 2014, 4(11), 3902CrossRefGoogle Scholar
  16. [16]
    Niu F., Li S., Zong Y., Yao Q., J. Phys. Chem. C, 2014, 118(33), 19165CrossRefGoogle Scholar
  17. [17]
    Wu H., Pantaleo G., Di Carlo G., Guo S., Marcì G., Concepción P., Venezia A. M., Liotta L. F., Catal. Sci. Technol., 2015, 5, 1888CrossRefGoogle Scholar
  18. [18]
    Wang Q., Peng Y., Fu J., Kyzas G. Z., Reduwan Billah S. M., An S. Q., Appl. Catal. B-Environ., 2015, 168/169, 42CrossRefGoogle Scholar
  19. [19]
    Urda A., Popescu I., Cacciaguerra T., Tanchoux N., Tichit D., Marcu I. C., Appl. Catal. A: Gen., 2013, 464/465, 20CrossRefGoogle Scholar
  20. [20]
    Zhu Z. Z., Lu G. Z., Zhang Z. G., Guo Y., Guo Y. L., Wang Y. Q., ACS Catal., 2013, 3(6), 1154CrossRefGoogle Scholar
  21. [21]
    Zavyalova U., Scholz P., Ondruschka B., Appl. Catal. A: Gen., 2007, 323, 226CrossRefGoogle Scholar
  22. [22]
    Chen Z. P., Wang S., Liu W. G., Gao X. H., Gao D. N., Wang M. Z., Wang S. D., Appl. Catal. A: Gen., 2016, 525, 94CrossRefGoogle Scholar
  23. [23]
    Mu J. S., Zhang L., Zhao M., Wang Y., ACS Appl. Mater. Interfaces, 2014, 6(10), 7090CrossRefPubMedGoogle Scholar
  24. [24]
    Jiang J., Liu J. P., Huang X. T., Li Y. Y., Ding R. M., Ji X. X., Hu Y. Y., Chi Q. B., Zhu Z. H., Cryst. Growth Design, 2010, 10(1), 70CrossRefGoogle Scholar
  25. [25]
    Sun H. Q., Ang H. M., Tadé M. O., Wang S. B., J. Mater. Chem. A, 2013, 1, 14427CrossRefGoogle Scholar
  26. [26]
    Wang H., Chen C. L., Zhang Y. X., Peng L. X., Ma S., Yang T., Guo H. H., Zhang Z. D., Su D. S., Zhang J., Nat. Commun., 2015, 6, 1Google Scholar
  27. [27]
    Liotta L. F., Wu H., Pantaleo G., Venezia A. M., Catal. Sci. Technol., 2013, 3, 3085CrossRefGoogle Scholar
  28. [28]
    Hu L. H., Peng Q., Li Y. D., J. Am. Chem. Soc., 2008, 130(48), 16136CrossRefPubMedGoogle Scholar
  29. [29]
    Roy M., Ghosh S., Naskar M. K., Phys. Chem. Chem. Phys., 2015, 17, 10160CrossRefPubMedGoogle Scholar
  30. [30]
    Roy M., Ghosh S., Naskar M. K., Dalton Trans., 2014, 43, 10248CrossRefPubMedGoogle Scholar
  31. [31]
    Cao X. L., Wang L. L., Wang Y. J., Xu Q. J., Li Q. X., Chem. J. Chinese Universities, 2015, 36(6), 1187Google Scholar
  32. [32]
    Teng F., Chen M., Li G., Teng Y., Xu T., Hang Y., Yao W., Santhana-gopalan S., Meng D. D., Zhu Y., Appl. Catal. B: Environ., 2011, 110, 133CrossRefGoogle Scholar
  33. [33]
    Xiong S., Yuan C., Zhang X., Xi B., Qian Y., Chem. Eur. J., 2009, 15, 5320CrossRefPubMedGoogle Scholar
  34. [34]
    Chaudhari K., Bal R., Srinivas D., Chandwadkar A. J., Sivasanker S., Microporous Mesoporous Materials, 2001, 50, 209CrossRefGoogle Scholar
  35. [35]
    Jia Y. C., Wang S. Y., Lu J. Q., Luo M. F., Chem. Res. Chinese Universities, 2016, 32(5), 808CrossRefGoogle Scholar
  36. [36]
    Zou Z. Q., Meng M., Luo J. Y., Zha Y. Q., Xie Y. N., Hu T. D., Liu T., J. Mol. Catal. A-Chem., 2006, 249, 240CrossRefGoogle Scholar
  37. [37]
    Oka Y., Kuroda Y., Matsuno T., Kamata K., Wada H., Shimojima A., Kuroda K., Chem. Eur. J., 2017, 23, 9362CrossRefPubMedGoogle Scholar
  38. [38]
    Dai Y. F., Shen S. D., Ma Z., Ma L. M., Sun Z. S., Yu J., Wan C. Y., Han S., Mao D. S., Lu G. Z., J. Nanosci. Nanotechn., 2017, 17(6), 3772CrossRefGoogle Scholar
  39. [39]
    Ding R. R., Li C., Wang L. J., Hu R. S., Appl. Catal. A: Gen., 2013, 464/465, 261CrossRefGoogle Scholar
  40. [40]
    Xu X. L., Han H., Liu J. J., Liu W. M., Li W. L., Wang X., J. Rare Earths, 2014, 32, 159CrossRefGoogle Scholar
  41. [41]
    Wang F. G., Zhang L. J., Xu L. L., Deng Z. Y., Shi W. D., Fuel, 2017, 203, 419CrossRefGoogle Scholar
  42. [42]
    Liotta L. F., Carlo G. Di, Pantaleo G., Deganello G., Appl. Catal. B: Environ., 2007, 70, 314CrossRefGoogle Scholar
  43. [43]
    Song W., Poyraz A. S., Meng Y., Ren Z., Chen S. Y., Suib S. L., Chem. Mater., 2014, 26, 4629CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Research Institute of Special ChemicalsTaiyuan University of TechnologyTaiyuanP. R. China
  2. 2.College of Environmental Science and EngineeringTaiyuan University of TechnologyJinzhongP. R. China

Personalised recommendations