Advertisement

Chemical Research in Chinese Universities

, Volume 33, Issue 4, pp 631–637 | Cite as

Structures, stabilities and work functions of alkali-metal-adsorbed boron α 1-sheets

  • Tingting Yi
  • Bing Zheng
  • Haitao YuEmail author
  • Ying Xie
Article

Abstract

In this study, we employed the density functional theory method to simulate Li-, Na- and K-adsorbed boron α1-sheets(α1-BSTs). After optimizing possible structures, we investigated their thermodynamic stabilities, barriers for metal atom diffusion on the substrate, and work functions. The computed results indicate that the work function of α1-BST decreases significantly after the adsorption of Li, Na and K. Furthermore, under high hole coverage, these alkali-metal-adsorbed α1-BSTs have lower work functions than the two-dimensional materials of greatest concern and the commonly used electrode materials Ca and Mg. Therefore, the Li-, Na- and K-adsorbed α1-BSTs are potential low-work-function nanomaterials.

Keywords

Boron α1-sheet Binding energy Migration barrier Alkali metal adsorption Work function 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

40242_2017_7038_MOESM1_ESM.pdf (2 mb)
Structures, stabilities and work functions of alkali-metal-adsorbed boron α 1-sheets

References

  1. [1]
    Gupta A., Sakthivel T., Seal S., Prog. Mater. Sci., 2015, 73, 44CrossRefGoogle Scholar
  2. [2]
    Bianco E., Butler S., Jiang S. S., Restrepo O. D., Windl W., Gold-berger J. E., ACS Nano, 2013, 7(5), 4414CrossRefGoogle Scholar
  3. [3]
    Aufray B., Kara A., Vizzini S., Oughaddou H., Léandri C., Ealet B., Le Lay G., Appl. Phys. Lett., 2010, 96(18), 183102CrossRefGoogle Scholar
  4. [4]
    Vogt P., de Padova P., Quaresima C., Avila J., Frantzeskakis E., Asensio M. C., Resta A., Ealet B., Le Lay G., Phys. Rev. Lett., 2012, 108(15), 155501CrossRefGoogle Scholar
  5. [5]
    Zhu F. F., Chen W. J., Xu Y., Gao C. L., Guan D. D., Liu C. H., Qian D., Zhang S. C., Jia J. F., Nat. Mater., 2015, 14, 1020CrossRefGoogle Scholar
  6. [6]
    Reich E. S., Nature, 2014, 506(7486), 19CrossRefGoogle Scholar
  7. [7]
    Zhu Y. W., Murali S., Cai W. W., Li X. S., Suk J. W., Potts J. R., Ruoff R. S., Adv. Mater., 2010, 22(35), 3906CrossRefGoogle Scholar
  8. [8]
    Eigler S., Hirsch A., Angew. Chem. Int. Ed., 2014, 53(30), 7720CrossRefGoogle Scholar
  9. [9]
    Zhu Y., James D. K., Tour J. M., Adv. Mater., 2012, 24(36), 4924CrossRefGoogle Scholar
  10. [10]
    Weiss N. O., Zhou H. L., Liao L., Liu Y., Jiang S., Huang Y., Duan X. F., Adv. Mater., 2012, 24(43), 5782CrossRefGoogle Scholar
  11. [11]
    Huang Y., Liang J. J., Chen Y. S., Small, 2012, 8(12), 1805CrossRefGoogle Scholar
  12. [12]
    Zhu J. X., Yang D., Yin Z. Y., Yan Q. Y., Zhang H., Small, 2014, 10(17), 3480CrossRefGoogle Scholar
  13. [13]
    Ji L. W., Meduri P., Agubra V., Xiao X. C., Acoutlabi M., Adv. Energy Mater., 2016, 6(16), 1502159CrossRefGoogle Scholar
  14. [14]
    Mortazavi B., Dianat A., Cuniberti G., Rabczuk T., Electrochim. Ac-ta, 2016, 213, 865CrossRefGoogle Scholar
  15. [15]
    Lau K. C., Pandey R., J. Phys. Chem. B, 2008, 112(33), 10217CrossRefGoogle Scholar
  16. [16]
    Penev E. S., Bhowmick S., Sadrzadeh A., Yakoson B. I., Nano Lett., 2012, 12(5), 2441CrossRefGoogle Scholar
  17. [17]
    Wu X. J., Dai J., Zhao Y., Zhuo Z. W., Yang J. L., Zeng X. C., ACS Nano, 2012, 6(8), 7443CrossRefGoogle Scholar
  18. [18]
    Yu X., Li L. L., Xu X. W., Tang C. C., J. Phys. Chem. C, 2012, 116(37), 20075CrossRefGoogle Scholar
  19. [19]
    Er S., de Wijs G. A., Brocks G., J. Phys. Chem. C, 2009, 113(43), 18962CrossRefGoogle Scholar
  20. [20]
    Lau K. C., Pandey R., J. Phys. Chem. C, 2007, 111(7), 2906CrossRefGoogle Scholar
  21. [21]
    Zheng B., Yu H. T., Lian Y. F., Xie Y., Chem. Phys. Lett., 2016, 648, 81CrossRefGoogle Scholar
  22. [22]
    Galeev T. R., Chen Q., Guo J. C., Bai H., Miao C. Q., Lu H. G., Sergeeva A. P., Li S. D., Boldyrev A. I., Phys. Chem. Chem. Phys., 2011, 13, 11575CrossRefGoogle Scholar
  23. [23]
    Zheng B., Yu H. T., Xie Y., Lian Y. F., ACS Appl. Mater. Interfaces, 2014, 6(22), 19690CrossRefGoogle Scholar
  24. [24]
    Tang H., Ismail Beigi S., Phys. Rev. Lett., 2007, 99(11), 115501CrossRefGoogle Scholar
  25. [25]
    Li G. Q., Appl. Phys. Lett., 2009, 94(19), 193116CrossRefGoogle Scholar
  26. [26]
    Piazza Z. A., Hu H. S., Li W. L., Zhao Y. F., Li J., Wang L. S., Nat. Commun., 2014, 5, 3113CrossRefGoogle Scholar
  27. [27]
    Li W. L., Chen Q., Tian W. J., Bai H., Zhao Y. F., Hu H. S., Li J., Zhai H. J., Li S. D., Wang L. S., J. Am. Chem. Soc., 2014, 136(35), 12257CrossRefGoogle Scholar
  28. [28]
    Marchi M., Azadi S., Sorella S., Phys. Rev. Lett., 2011, 107(8), 086807CrossRefGoogle Scholar
  29. [29]
    Liu H. S., Gao J. F., Zhao J. J., Sci. Rep., 2013, 3, 3238CrossRefGoogle Scholar
  30. [30]
    Tai G. A., Hu T. S., Zhou Y. G., Wang X. F., Kong J. Z., Zeng T., You Y. C., Wang Q., Chem. Int. Ed., 2015, 54(51), 15473CrossRefGoogle Scholar
  31. [31]
    Mannix A. J., Zhou X. F., Kiraly B., Wood J. D., Alducin D., Myers B. D., Liu X. L., Fisher B. L., Santiago U., Guest J. R., Yacaman M. J., Ponce A., Oganov A. R., Hersam M. C., Guisinger N. P., Science, 2015, 350(6267), 1513CrossRefGoogle Scholar
  32. [32]
    Feng B. J., Zhang J., Zhong Q., Li W. B., Li S., Li H., Cheng P., Meng S., Chen L., Wu K. H., Nat. Chem., 2016, 8(6), 563CrossRefGoogle Scholar
  33. [33]
    Li X. B., Xie S. Y., Zheng H., Tian W. Q., Sun H. B., Nanoscale, 2015, 7(45), 18863CrossRefGoogle Scholar
  34. [34]
    Zhang H., ACS Nano, 2015, 9(10), 9451CrossRefGoogle Scholar
  35. [35]
    Banerjee S., Periyasamy G., Pati S. K., J. Mater. Chem. A, 2014, 2, 3856CrossRefGoogle Scholar
  36. [36]
    Eda G., Unalan H. E., Rupesinghe N., Amartunga G. A. J., Chho-walla M., Appl. Phys. Lett., 2008, 93(23), 233502CrossRefGoogle Scholar
  37. [37]
    Bekyarova E., Itkis M. E., Ramesh P., Berger C., Sprinkle M., de Heer W. A., Haddon R. C., J. Am. Chem. Soc., 2009, 131(4), 1336CrossRefGoogle Scholar
  38. [38]
    Wang H. B., Maiyalagan T., Wang X., ACS Catal., 2012, 2(5), 781CrossRefGoogle Scholar
  39. [39]
    Shi Z. M., Zhang Z. H., Kutana A., Yakobson B. I., ACS Nano, 2015, 9(10), 9802CrossRefGoogle Scholar
  40. [40]
    Ding Y., Wang Y. L., J. Phys. Chem. C, 2014, 118(8), 4509CrossRefGoogle Scholar
  41. [41]
    Pandey M., Rasmussen F. A., Kuhar K., Olsen T., Jacobsen K. W., Thygesen K. S., Nano Lett., 2016, 16(4), 2234CrossRefGoogle Scholar
  42. [42]
    Yildirim H., Kinaci A., Zhao Z. J., Chan M. K. Y., Greeley J. P., ACS Appl. Mater. Interfaces, 2014, 6(23), 21141CrossRefGoogle Scholar
  43. [43]
    Zhou L. J., Hou Z. F., Wu L. M., J. Phys. Chem. C, 2012, 116(41), 21780CrossRefGoogle Scholar
  44. [44]
    Sahin H., Peeters F. M., Phys. Rev. B, 2013, 87(8), 085423CrossRefGoogle Scholar
  45. [45]
    Xu B., Lu H. S., Liu B., Liu G., Wu M. S., Ouyang C. Y., Chin. Phys. B, 2016, 25(6), 067103CrossRefGoogle Scholar
  46. [46]
    Pang Q., Li L., Zhang L. L., Zhang C. L., Song Y. L., Can. J. Phys., 2015, 93(11), 1310CrossRefGoogle Scholar
  47. [47]
    Pang Q., Li L., Zhang C. L., Wei X. M., Song Y. L., Mater. Chem. Phys., 2015, 160, 96CrossRefGoogle Scholar
  48. [48]
    Hao J. H., Wang Z. J., Wang Y. F., Yin Y. H., Jiang R., Jin Q. H., Solid State Sci., 2015, 50, 69CrossRefGoogle Scholar
  49. [49]
    Yu Y. J., Zhao Y., Ryu S., Brus L. E., Kim K. S., Kim P., Nano Lett., 2009, 9(10), 3430CrossRefGoogle Scholar
  50. [50]
    Liang Q. H., Jiang J. K., Meng R. S., Ye H. Y., Tan C. J., Yang Q., Sun X., Yang D. G., Chen X. P., Phys. Chem. Chem. Phys., 2016, 18(24), 16386CrossRefGoogle Scholar
  51. [51]
    Shi Y. M., Kim K. K., Reina A., Hofmann M., Li L. J., Kong J., ACS Nano, 2010, 4(5), 2689CrossRefGoogle Scholar
  52. [52]
    Cho Y., Sohn A., Kim S., Hahm M. G., Kim D. H., Cho B., Kim D. W., ACS Appl. Mater. Interfaces, 2016, 8(33), 21612CrossRefGoogle Scholar
  53. [53]
    Xia S. H., Liu L., Kong Y. K., Wang H. G., Wang M. S., Appl. Surf. Sci., 2016, 387, 1110CrossRefGoogle Scholar
  54. [54]
    Kwon K. C., Choi K. S., Kim B. J., Lee J. L., Kim S. Y., J. Phys. Chem. C, 2012, 116(50), 26586CrossRefGoogle Scholar
  55. [55]
    Bae G., Cha J., Lee H., Park W., Park N., Carbon, 2012, 50(3), 851CrossRefGoogle Scholar
  56. [56]
    Perdew J. P., Chevary J. A., Vosko S. H., Jackson K. A., Pederson M. R., Singh D. J., Fiolhais C., Phys. Rev. B, 1992, 46(11), 6671CrossRefGoogle Scholar
  57. [57]
    Perdew J. P., Burke K., Wang Y., Phys. Rev. B, 1996, 54(23), 16533CrossRefGoogle Scholar
  58. [58]
    Becke A. D., Phys. Rev. A, 1988, 38(6), 3098CrossRefGoogle Scholar
  59. [59]
    Langreth D. C., Mehl M. J., Phys. Rev. B, 1983, 28(4), 1809CrossRefGoogle Scholar
  60. [60]
    Monkhorst H. J., Pack J. D., Phys. Rev. B, 1976, 13(12), 5188CrossRefGoogle Scholar
  61. [61]
    Chan K. T., Neaton J. B., Cohen M. L., Phys. Rev. B, 2008, 77(23), 235430CrossRefGoogle Scholar
  62. [62]
    Wang Y. S., Wang F., Li M., Xu B., Sun Q., Jia Y., Appl. Surf. Sci., 2012, 258(22), 8874CrossRefGoogle Scholar
  63. [63]
    Rytkönen K., Akola J., Manninen M., Phys. Rev. B, 2007, 75(7), 075401CrossRefGoogle Scholar
  64. [64]
    Michaelson H. B., J. Appl. Phys., 1977, 48, 4729CrossRefGoogle Scholar
  65. [65]
    Skriver H. L., Rosengaard N. M., Phys. Rev. B, 1992, 46(11), 7157CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials ScienceHeilongjiang UniversityHarbinP. R. China

Personalised recommendations