Chemical Research in Chinese Universities

, Volume 33, Issue 5, pp 794–798 | Cite as

Thermodynamic description of the MCl2-ThCl4 (M: Mg, Ca, Sr, Ba) systems

  • Mengya Xie
  • Xiang Li
  • Yaping Ding
  • Guoxin Zhang


The phase equilibria for the MCl2-ThCl4(M: Mg, Ca, Sr, Ba) binary systems were critically evaluated and optimized based upon the CALPHAD approach. The substitutional solution model(SSM) was used to describe the liquid phase. All the intermediate compounds were treated as stoichiometric compounds of which Gibbs energies comply with the Neumann-Kopp rule. Thermodynamic model parameters optimization for respective phases was conducted by the least squares minimization procedure with required input data available from experimental measurements. Satisfactory agreements between all calculated results and experimental data were achieved which demonstrates that thermodynamic databases for the MCl2-ThCl4(M: Mg, Ca, Sr, Ba) binary systems were ultimately derived in the present work allowing safe extrapolation into multi-component system for guiding relative industrial applications.


Thermodynamics Molten salt Phase diagram 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Aneke M., Wang M. H., Appl. Energ., 2016, 179, 350CrossRefGoogle Scholar
  2. [2]
    Mahlia T. M. I., Saktisahdan T. J., Jannifar A., Hasan M. H., Matsee-lar H. S. C., Renew. Sustain. Energy Rev., 2014, 33, 532CrossRefGoogle Scholar
  3. [3]
    Zhou Z., Benbouzid M., Charpentier J. F., Scuiller F., Tang T., Renew. Sustain. Energy Rev., 2012, 18, 390CrossRefGoogle Scholar
  4. [4]
    Rosenthal M. W., Kasten P. R., Briggs R. B., Nucl. Appl. Technol., 1970, 8, 107CrossRefGoogle Scholar
  5. [5]
    Haubenreich P. N., Engel J. R., Nucl. Appl. Technol., 1970, 8, 118CrossRefGoogle Scholar
  6. [6]
    LeBlanc D., Nucl. Eng. Des., 2010, 240, 1644CrossRefGoogle Scholar
  7. [7]
    Mathieu L., Heuer D., Brissot R., Garzenne C., Prog. Nucl. Energy, 2006, 48, 664CrossRefGoogle Scholar
  8. [8]
    Baes C. F., J. Nucl. Mater., 1974, 51, 149CrossRefGoogle Scholar
  9. [9]
    Kalibabchuk V. A., Zaitseva G. N., J. Alloy. Compd., 1998, 271-273, 786CrossRefGoogle Scholar
  10. [10]
    Barton C. J., Bratcher L. M., Blakely J. P., Nessle G. J., Grimes W. R., Phase Diagrams of Nuclear Reactor Materials. U.S.A.E.C, Report No. ONRL-2548, Contract No.W-7405, 1959 Google Scholar
  11. [11]
    Thoma R. E., Insley H., Landau B. S., Friedman H. A., Grimes W. R., J. Phys. Chem., 1959, 63, 1266CrossRefGoogle Scholar
  12. [12]
    Asker W. J., Segnit E. R., Wylie A. W., J. Chem. Soc., 1952, 4470Google Scholar
  13. [13]
    Saunders N., Miodownik A. P., Calculation of Phase Diagrams: A Comprehensive Guide, UK, 1998 Google Scholar
  14. [14]
    Yin H. Q., Wang K., Liu W. G., Xie L. D., Han H., Wang W. F., Chem. J. Chinese Universities, 2014, 35(12), 2668Google Scholar
  15. [15]
    Yin H. Q., Wang K., Liu W. G., Xie L. D., Han H., Wang W. F., Chem. Res. Chinese Universities, 2015, 31(3), 461CrossRefGoogle Scholar
  16. [16]
    Wang K., Zuo Y., Zhang P., Xie L. D., Compositional Design of the Fuel Salt Used in TMSR-LF1 Project, Technological Report from TMSR Center, Shanghai Institute of Applied Physics, 2015 Google Scholar
  17. [17]
    Grobunov L. V., Desyatni V. N., Raspopin S. P., Trifonov K. I., Zh. Neorg. Khim, 1974, 19(11), 3093Google Scholar
  18. [18]
    Stull D. R., Prophet H., JANAF Thermochemical Tables, U.S. De-partment of Commerce, Washington, 1985 Google Scholar
  19. [19]
    Barin I., Knacke O., Kubaschewski O., Thermochemical Properties of Inorganic Substances, Springer-Verlag, Berlin, 1977 CrossRefGoogle Scholar
  20. [20]
    Margules M., Sitzungsber Akad. Wiss. Wien., 1895, 104, 1243Google Scholar
  21. [21]
    Borelius G., Annalen. Der. Physik, 1934, 20, 57CrossRefGoogle Scholar
  22. [22]
    Redlich O., Kister A. T., J. Ind. Eng. Chem. Res., 1948, 40, 345CrossRefGoogle Scholar
  23. [23]
    Bale C. W., Pelton A. D., Metall. Trans., 1974, 5, 2323CrossRefGoogle Scholar
  24. [24]
    Kopp H., Philos. Trans. R. Soc. A, 1865, 155, 71CrossRefGoogle Scholar
  25. [25]
    Dworkin A. S., Bredig M. A., J. Phys. Chem., 1963, 67, 697CrossRefGoogle Scholar
  26. [26]
    Hull S., Norberg S. T., Ahmed I., Eriksson S. G., Mohn C. E., J. Solid State Chem., 2011, 184, 2925CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghaiP. R. China
  2. 2.Department of ChemistryShanghai UniversityShanghaiP. R. China

Personalised recommendations