Chemical Research in Chinese Universities

, Volume 33, Issue 5, pp 847–852 | Cite as

Preparation and biocompatibility of polyester films grafted with functional mPEG copolymers

  • Yanhong Ma
  • Yan Jiang
  • Yuan Liang
  • Weiwei Zhang
  • Hongwen Zhang
  • Rong Zhang
Article
  • 50 Downloads

Abstract

The surface of poly(ethylene terephthalate)(PET) films is inert, hydrophobic, and incompatible with blood, which has limited its practical bioapplication. In this case, better biocompatibility could be achieved by surface modification. In this study, the grafted copolymer of functional methoxypolyethylene glycol(mPEG) derivatives and styrene from the PET surfaces was prepared via surface-initiated atom transfer radical polymerization(SI-ATRP). The structures, composition, properties and surface morphology of the grafted PET films were characterized by Fourier transform infrared spectroscopy(FTIR), X-ray photoelectron spectroscopy(XPS), contact angle measurements and scanning electronic microscopy(SEM). The results indicate that the surface of the PET films has been covered by a thick targeted copolymer layer that converted the hydrophobic surface of PET to an amphiphilic surface. The bacterial adhesion and cell culture results indicate the copolymer-grafted PET film may possess good biocompatibility.

Keywords

Poly(ethylene terephthalate) film Surface-initiated atom transfer radical polymerization(SI-ATRP) Bio-compatibility 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Mauricio M. R., Carvalho M., Radovanovic G. E., Muniz E. C., Rubira A. F., Mater. Sci. Eng. C, 2009, 29(2), 594CrossRefGoogle Scholar
  2. [2]
    Özçam A. E., Roskov K. E., Genzer J., Spontak R. J., ACS Appl. Mater. Interfaces, 2012, 4(1), 59CrossRefGoogle Scholar
  3. [3]
    Indest T., Laine J., Ribitsch V., Johansson L. S., Stana-Kleinschek K., Strnad S., Biomacromolecules, 2008, 9(8), 2207CrossRefGoogle Scholar
  4. [4]
    Liu Q. S., Singh A., Lalani R., Liu L. Y., Biomacromolecules, 2012, 13(4), 1086CrossRefGoogle Scholar
  5. [5]
    Kwak D., Wu Y., Horbett T. A., J. Biomed. Mater. Res. Part A, 2005, 74(1), 69CrossRefGoogle Scholar
  6. [6]
    Kidane A., Mcpherson T., Shim H. S., Park K., Colloids and Surfaces B: Biointerfaces, 2000, 18(3/4), 347CrossRefGoogle Scholar
  7. [7]
    Seto F., Fukuyama K., Muraoka Y., Kishida A., Akashi M., J. Appl. Polym. Sci., 2015, 68(11), 1773CrossRefGoogle Scholar
  8. [8]
    Wu Z. Q., Tong W. F., Jiang W. W., Liu X. L., Wang Y. W., Colloids Surf., B: Biointerfaces, 2012, 96(1), 37CrossRefGoogle Scholar
  9. [9]
    Ueda J., Gang W., Shirai K., Yamauchi T., Tsubokawa N., Polym. Bull., 2008, 60(5), 617CrossRefGoogle Scholar
  10. [10]
    Fan X. W., Zhou Q. Y., Xia C. J., Cristofoli W., Mays J., Advincula R., Langmuir, 2002, 18(11), 4511CrossRefGoogle Scholar
  11. [11]
    Jordi M. A., Seery T. A. P., J. Am. Chem. Soc., 2005, 127(12), 4416CrossRefGoogle Scholar
  12. [12]
    Stenzel M. H., Zhang L., Huck W. T. S., Macromol. Rapid Commun., 2006, 27(14), 1121CrossRefGoogle Scholar
  13. [13]
    Pyun J., Kowalewski T., Matyjaszewski K., Macromol. Rapid. Commun., 2005, 24(18), 1043CrossRefGoogle Scholar
  14. [14]
    Zhang H. W., Lei X. P., Su Z. X., Liu P., J. Polym. Res., 2007, 14(4), 253CrossRefGoogle Scholar
  15. [15]
    Li D., Sheng X., Zhao B. J., J. Am. Chem. Soc., 2005, 127, 6248CrossRefGoogle Scholar
  16. [16]
    Irina C. F., Jeroen L., Mei C. H., Busscher H. J., Schouten A. J., Langmuir, 2007, 23(9), 5120CrossRefGoogle Scholar
  17. [17]
    Smet N. D., Rymarczyk-Machal M., Schacht E., Biomater J., Sci., Polym, Ed., 2009, 20(14), 2039Google Scholar
  18. [18]
    Whitesides G. M., Ostuni E., Takayama S., Jiang X., Ingber D., An-nual Review of Biomedical Engineering, 2001, 3(1), 335CrossRefGoogle Scholar
  19. [19]
    Kolhe P., Kannan R. M., Biomacromolecules, 2003, 4(1), 173CrossRefGoogle Scholar
  20. [20]
    Rodríguez-Nogales C., Garbayoa E., Carmona-Abellán M. M., Lu-quin M. R., Blanco-Prieto M. J., Maturitas, 2016, 84, 25CrossRefGoogle Scholar
  21. [21]
    Zhang X., Zeng G., Tian J., Wan Q., Huang Q., Wang K., Zhang Q., Liu M., Deng F., Wei Y., Appl. Surf. Sci., 2015, 351, 425CrossRefGoogle Scholar
  22. [22]
    Truong V., Blakey I., Whittaker A. K., Biomacromolecules, 2012, 13, 4012CrossRefGoogle Scholar
  23. [23]
    Zhang H. W., Shouro D., Itoh K., Takata T., Jiang Y., J. Appl. Polym. Sci., 2008, 108(1), 351CrossRefGoogle Scholar
  24. [24]
    Khayet M., Nasef M. M., Mengual J. I., J. Membr. Sci., 2005, 263(1/2), 77CrossRefGoogle Scholar
  25. [25]
    Mack D., Rohde H., Dobinsky S., Riedewald J., Nedelmann M., Knobloch J. K. M., Elsner H. A., Feucht H. H., Infect. Immun., 2000, 68(7), 3799CrossRefGoogle Scholar
  26. [26]
    Jiang Y., Liang Y., Zhang H. W., Zhang W. W., Tu S. S., Mater. Sci. Eng. C, 2014, 41, 1CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Yanhong Ma
    • 1
  • Yan Jiang
    • 2
    • 4
  • Yuan Liang
    • 2
  • Weiwei Zhang
    • 3
  • Hongwen Zhang
    • 2
  • Rong Zhang
    • 2
  1. 1.Institute of Agro-product ProcessingJiangsu Academy of Agricultural SciencesNanjingP. R. China
  2. 2.College of Materials Science and EngineeringChangzhou UniversityChangzhouP. R. China
  3. 3.College of Life Science, Agriculture and ForestryQiqihar UniversityQiqiharP. R. China
  4. 4.Jiangsu Chenguang Paint Co., Ltd.ChangzhouP. R. China

Personalised recommendations