Skip to main content
Log in

Solvothermal synthesis of magnetic Fe3O4 nanospheres and their efficiency in photo-Fenton degradation of xylenol orange

  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Magnetic Fe3O4 nanospheres with a average diameter of (201±0.5) nm were synthesized at 200 °C via a solvothermal method. The as-synthesized Fe3O4 nanospheres performed an efficiency in the Fenton degradation of xylenol orange with a degradation rate of 90%—95%. Additionally, the catalyst was easily recyclable and the recovery rate was greater than 90%. Moreover, the catalyst could be regenerated under an ultrasonic treatment, and the degradation performance remained essentially the same. More importantly, the degradation rate varied with respect to the amount of H2O2 and the pH of the best reaction process. And the reaction efficiency was achieved with 1.5 mL of H2O2 in an acidic environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Saldivar-Ramirez M. M., Sanchez-Torres C. G., Cortes-Hernandez D. A., Escobedo-Bocardo J. C., Almanza-Robles J. M., Larson A., Resendiz-Hernandez P. J., Acuna-Gutierrez I. O., Journal of Materials Science, Materials in Medicine, 2014, 25, 2229

    Article  CAS  Google Scholar 

  2. Ge Y., Xiang Y., He Y., Ji M., Song G., Desalination and Water Treatment, 2015, 57, 9837

    Article  Google Scholar 

  3. Wang Z., Yin L., Chen Z., Zhou G., Shi H., Journal of Nanomaterials, 2014, 2014, 1

    Google Scholar 

  4. Kim J., Lee J. E., Lee S. H., Yu J. H., Lee J. H., Park T. G., Hyeon T., Advanced Materials, 2008, 20, 478

    Article  CAS  Google Scholar 

  5. Ding N., Yan N., Ren C. L., Chen X. G., Anal. Chem., 2010, 82, 5897

    Article  CAS  Google Scholar 

  6. Emadi H., Nemati Kharat A., Materials Research Bulletin, 2013, 48, 3994

    Article  CAS  Google Scholar 

  7. Yang C., Wu J., Hou Y., Chem. Commun., 2011, 47, 5130

    Article  CAS  Google Scholar 

  8. Liu X. D., Chen H., Liu S. S., Ye L. Q., Li Y. P., Materials Research Bulletin, 2015, 62, 217

    Article  CAS  Google Scholar 

  9. Bautista P., Mohedano A. F., Casas J. A., Zazo J. A., Rodriguez J. J., J. Chem. Technology & Biotechnology, 2008, 83, 1323

    Article  CAS  Google Scholar 

  10. Nguyen T. D., Phan N. H., Do M. H., Ngo K. T., J. Hazardous Materials, 2011, 185, 653

    Article  CAS  Google Scholar 

  11. Daud N. K., Hameed B. H., J. Hazardous Materials, 2010, 176, 938

    Article  CAS  Google Scholar 

  12. Daud N. K., Ahmad M. A., Hameed B. H., Chemical Engineering Journal, 2010, 165, 111

    Article  CAS  Google Scholar 

  13. Tian S. H., Tu Y. T., Chen D. S., Chen X., Xiong Y., Chemical Engineering Journal, 2011, 169, 31

    Article  CAS  Google Scholar 

  14. Liang D. X., Li J., Pang G. S., J. Mater. Sci., 2016, 51, 5412

    Article  CAS  Google Scholar 

  15. Santos M. S. F., Alves A., Madeira L. M., Chemical Engineering Journal, 2011, 175, 279

    Article  CAS  Google Scholar 

  16. Xiao J., Wang C., Lyu S., Liu H., Jiang C., Lei Y., Separation and Purification Technology, 2016, 169, 202

    Article  CAS  Google Scholar 

  17. Xu L., Wang J., Separation and Purification Technology, 2015, 149, 255

    Article  CAS  Google Scholar 

  18. Guo S., Zhang G., Yu J. C., Journal of Colloid and Interface Science, 2015, 448, 460

    Article  CAS  Google Scholar 

  19. Cheng H., Chou S., Chen S., Yu C., Journal of Environmental Sciences, 2014, 26, 1307

    Article  CAS  Google Scholar 

  20. Fu L., Zhao Z., Ma J., Hu X., Catal. Commun., 2015, 65, 96

    Article  CAS  Google Scholar 

  21. Tokumura M., Shibusawa M., Kawase Y., Chemical Engineering Science, 2013, 100, 212

    Article  CAS  Google Scholar 

  22. Bokare A. D., Choi W., J. Hazardous Materials, 2014, 275, 121

    Article  CAS  Google Scholar 

  23. Pignatello J. J., Oliveros E., MacKay A., Critical Reviews in Environmental Science and Technology, 2006, 36, 1

    Article  CAS  Google Scholar 

  24. Torrades F., García-Montaño J., Dyes and Pigments, 2014, 100, 184

    Article  CAS  Google Scholar 

  25. Sarrai A., Hanini S., Merzouk N., Tassalit D., Szabó T., Hernádi K., Nagy L., Materials, 2016, 9, 428

    Article  Google Scholar 

  26. Lipczynska-Kochany E., Kochany J., Chemosphere, 2008, 73, 745

    Article  CAS  Google Scholar 

  27. Malato S., Fernández-Ibáñez P., Maldonado M. I., Blanco J., Gernjak W., Catalysis Today, 2009, 147, 1

    Article  CAS  Google Scholar 

  28. Masomboon N., Chen C. W., Anotai J., Lu M. C., Chemical Engineering Journal, 2010, 159, 116

    Article  CAS  Google Scholar 

  29. Sun G., Dong B., Cao M., Wei B., Hu C., Chemistry of Materials, 2011, 23, 1587

    Article  CAS  Google Scholar 

  30. Zhang H., Zhu G., Applied Surface Science, 2012, 258, 4952

    Article  CAS  Google Scholar 

  31. Mukhopadhyay A., Joshi N., Chattopadhyay K., De G., ACS Applied Materials & Interfaces, 2012, 4, 142

    Article  CAS  Google Scholar 

  32. Hu A., Chen X., Tang Q., Zeng B., Ceramics International, 2014, 40, 14713

    Article  CAS  Google Scholar 

  33. Ni S., Lin S., Pan Q., Yang F., Huang K., He D., Journal of Physics D: Applied Physics, 2009, 42, 055004

    Article  Google Scholar 

  34. Hojati-Talemi P., Azadmanjiri J., Simon G. P., Materials Letters, 2010, 64, 1684

    Article  CAS  Google Scholar 

  35. Huang Y., Zhang L., Huan W., Liang X., Liu X., Yang Y., Glass Physics and Chemistry, 2010, 36, 325

    Article  CAS  Google Scholar 

  36. Zhang J., Yao Y., Huang T., Yu A., Electrochimica Acta, 2012, 78, 502

    Article  CAS  Google Scholar 

  37. Liang X., Shi H., Jia X., Yang Y., Liu X., Materials Sciences and Applications, 2011, 02, 1644

    Article  CAS  Google Scholar 

  38. Xing R., Xu F., Liu S., Niu J., Materials Letters, 2014, 134, 71

    Article  CAS  Google Scholar 

  39. Shariatinia Z., Nikfar Z., Inter. J. Biolog. Macro., 2013, 60, 226

    Article  CAS  Google Scholar 

  40. Yang Z., Huang R., Qi W., Tong L., Su R., He Z., Chemical Engineering Journal, 2015, 280, 90

    Article  CAS  Google Scholar 

  41. Pipit F., Shanty M., Ferry I., Rino R. M., Mikrajuddin A., Research and Development on Nanotechnology in Indonesia, 2014, 1, 23

    Google Scholar 

  42. Zhu L. P., Xiao H. M., Wei D., Yang G., Fu S. Y., Crystal Growth & Design, 2008, 8, 957

    Article  CAS  Google Scholar 

  43. Daou T. J., Pourroy G., Bégin-Colin S., Grenèche J. M., Ulhaq-Bouillet C., Legaré P., Bernhardt P., Leuvrey C., Rogez G., Chemistry of Materials, 2006, 18, 4399

    Article  CAS  Google Scholar 

  44. Vereda F., Vicente J., Segovia-Gutierrez J. P., Hidalgo-Alvarez R., Journal of Applied Physics, 2011, 110, 063520

    Article  Google Scholar 

  45. Cheng Z., Gao Z., Ma W., Sun Q., Wang B., Wang X., Chemical Engineering Journal, 2012, 209, 451

    Article  CAS  Google Scholar 

  46. Mishra A. K., Ramaprabhu S., Journal of Materials Chemistry, 2011, 21, 7467

    Article  CAS  Google Scholar 

  47. Liu H., Wu J., Min J. H., Zhang X., Kim Y. K., Materials Research Bulletin, 2013, 48, 551

    Article  CAS  Google Scholar 

  48. Herney-Ramirez J., Vicente M. A., Madeira L. M., Applied Catalysis B: Environmental, 2010, 98, 10

    Article  CAS  Google Scholar 

  49. Guo S., Zhang G., Wang J., Journal of Colloid and Interface Science, 2014, 433, 1

    Article  CAS  Google Scholar 

  50. Xia J., Wang A., Liu X., Su Z. X., Applied Surface Science, 2011, 257, 9724

    Article  CAS  Google Scholar 

  51. Boruah P. K., Sharma B., Karbhal I., Shelke M. V., Das M. R., J. Hazardous Materials, 2017, 325, 90

    Article  CAS  Google Scholar 

  52. Ma J., Guo S., Guo X., Ge H. J., Applied Surface Science, 2015, 353, 1117

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daxin Liang.

Additional information

Supported by the National Natural Science Foundation of China(No.31400497), the Fundamental Research Funds for the Central Universities, China(No.2572017BB14), the Heilongjiang Postdoctoral Financial Assistance, China(No.LBH-Z13001), the General Financial Grant from the China Postdoctoral Science Foundation, China(No.2014M561311) and the Open Pro ject of State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, China(No.2016-24).

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, K., Di, M., Zhang, J. et al. Solvothermal synthesis of magnetic Fe3O4 nanospheres and their efficiency in photo-Fenton degradation of xylenol orange. Chem. Res. Chin. Univ. 33, 648–654 (2017). https://doi.org/10.1007/s40242-017-6493-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-017-6493-3

Keywords

Navigation