Chemical Research in Chinese Universities

, Volume 33, Issue 5, pp 765–772 | Cite as

Theoretical and experimental study of the reaction of 2-guanidinobenzimidazole on a series of meta-substituted benzaldehydes

  • Chebbi Monia
  • Chebbi Hammouda
  • M’rabet Hedi
  • Arfaoui Youssef


The syntheses of a variety of 1,3,5-triazinebenzimidazoles obtained by the cyclocondensation reaction of 2-guanidinobenzimidazole with a series of meta-substituted benzaldehydes were reported. The prepared compounds were fully characterized by IR and NMR spectroscopies. Based on the density functional theory(DFT) calculations method, quantum chemical calculations were performed by Gaussian 09 set of programs. All possible transition states, reactants and products were fully optimized at the hybrid density functional B3LYP level using the 6-311+G(d,p). The geometries of five possible tautomers of 2-amino-4-aryl[1,3,5]triazino[1,2-a]benzimidazoles were optimized in ethanol, using conductor like polarizable continuum(CPCM) in the gas phase. The energetic diagrams of tautomeric equilibrium showed that form A is the most stable tautomer which proved to be in accordance with the X-ray diffraction structure analysis. In order to interpret the reaction mechanism, the chemical reactivity was studied using local and global reactivity indexes.


2-Amino-4-aryl[1,3,5]triazino[1,2-a]benzimidazole 2-Guanidinobenzimidazole Density functional theory Tautomeric equilibrium Reaction mechanism X-Ray diffraction analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

40242_2017_6476_MOESM1_ESM.pdf (610 kb)
A combined experimental and DFT study of the meta-substituent effects on the formation of 2-amino-4-aryl[1,3,5]triazino[1,2-a] benzimidazoles


  1. [1]
    Chen Y., Yu K., Tan N. Y., Qiu R. H., Liu W., Luo N. L., Tong L., Au C. T., Luo Z. Q., Yin S. F., Eur. J. Med. Chem., 2014, 79, 39CrossRefGoogle Scholar
  2. [2]
    El-Sawy E. R., Mandour A. H., El-Hallouty S. M., Shaker K. H., Abo-Salem H. M., Arab. J. Chem., 2013, 6, 67CrossRefGoogle Scholar
  3. [3]
    Mabkhot Y. N., Barakat A., Al-Majid A. M., Alshahrani S., Yousuf S., Choudhary M. I., Chem. Cent. J., 2013, 7, 112CrossRefGoogle Scholar
  4. [4]
    El-salam N. M. A., Mostafa M. S., Ahmed G. A., Alothman O. Y., J. Chem., 2013, 2013, 1CrossRefGoogle Scholar
  5. [5]
    Azab M. E., Youssef M. M., El-Bordany E. A., Molecules, 2013, 18, 832CrossRefGoogle Scholar
  6. [6]
    Salem M. S., Sakr S. I., El-Senousy W. M., Madkour H. M. F., Arch. Pharm., 2013, 346, 766CrossRefGoogle Scholar
  7. [7]
    Said A. E. F., Hamdy K. T., Mahmoud M. E. M., Orient. J. Chem., 2015, 31, 709CrossRefGoogle Scholar
  8. [8]
    El-Feky H. A. S., Imran M., Osman A. N., BAOJ. Pharm. Sci., 2015, 1, 6Google Scholar
  9. [9]
    Ansari K. F., Lal C., Eur. J. Med. Chem., 2009, 44, 4028CrossRefGoogle Scholar
  10. [10]
    Ates-Alagoz Z., Yildiz S., Buyukbingol E., Chemotherapy, 2007, 53, 110CrossRefGoogle Scholar
  11. [11]
    Sreenivasulu E., Anees Pangal A., Muiz G., Javed A. S., Khursheed A., Res. J. Chem. Sci., 2014, 4, 78Google Scholar
  12. [12]
    Brown H. D., Matzuk A. R., Ilves I. R., Peterson L. H., Harris S. A., Sarett L. H., Egerton J. R., Yakstis J. J., Campbell W. C., Cuckler A. C., J. Am. Chem. Soc., 1961, 83, 1764CrossRefGoogle Scholar
  13. [13]
    Nakano H., Inoue T., Kawasaki N., Miyataka H., Matsumoto H., Ta-guchi T., Inagaki N., Nagai H., Satoh T., Chem. Pharm. Bull., 1999, 47, 1573CrossRefGoogle Scholar
  14. [14]
    Townsend L. B., Wise D. S., Parasitol Today, 1990, 6, 4CrossRefGoogle Scholar
  15. [15]
    Nofal Z. M., Fahmy H. H., Mohamed H. S., Arch. Pharm. Res., 2002, 25, 250CrossRefGoogle Scholar
  16. [16]
    Garuti L., Roberti M., Pession A., Leoncini E., Hrelia S., Bioorg. Med. Chem. Lett., 2001, 11, 3147CrossRefGoogle Scholar
  17. [17]
    Govinda R. K., Dipankar C., Int. J. Pharm. Sci. Drug. Res., 2014, 6, 67Google Scholar
  18. [18]
    Starcevic K., Kraji M., Ester K., Sabol I., Grce M., Pavelic K., Karminskizamola G., Bioorg. Med. Chem., 2007, 15, 4419CrossRefGoogle Scholar
  19. [19]
    Dubey R., Abuzar S., Sharma S., Chatterjee R. K., Katiyar J. C., J. Med. Chem., 1985, 28, 1748CrossRefGoogle Scholar
  20. [20]
    Katiyar S. K., Gordon V. R., McLaughlin G. L., Edlind T. D., Anti-microb. Agents. Chemother., 1994, 38, 2086CrossRefGoogle Scholar
  21. [21]
    Rida S. M., EI-Hawash S. A. M., Fahmy H. T. Y., Hazzaa A. A., EI- Meligy M. M., Arch. Pharm. Res., 2006, 29, 826CrossRefGoogle Scholar
  22. [22]
    Davidse L. C., Ann. Rev. Phytopathol., 1986, 24, 43CrossRefGoogle Scholar
  23. [23]
    Bansal Y., Silakari O. M., Bioorg. Med. Chem., 2012, 20, 6208CrossRefGoogle Scholar
  24. [24]
    Baudy R. B., Fletcher H., Yardley J. P., Zaleska M. M., Bramlett D. R., Tasse R. P., Kowal D. M., Katz A. H., Moyer J. A., Abou Gharbia M., J. Med. Chem., 2001, 44, 1516CrossRefGoogle Scholar
  25. [25]
    Zarrinmayeh H., Nunes A. M., Ornstein P. L., Zimmerman D. M., Arnold M. B., Schober D. A., Gackenheimer S. L., Bruns R. F., Hipskind P. A., Britton T. C., Cantrell B. E., Gehlert D. R., J. Med. Chem., 1998, 41, 2709CrossRefGoogle Scholar
  26. [26]
    White A. W., Almassy R., Calvert A. H., Curtin N. J., Griffin R. J., Hostomsky Z., Maegley K., Newell D. R., Srinivasan S., Golding B. T., J. Med. Chem., 2000, 43, 4084CrossRefGoogle Scholar
  27. [27]
    Hauel N. H., Nar H., Priepke H., Ries U., Stassen J., Wienen W., J. Med. Chem., 2002, 45, 1757CrossRefGoogle Scholar
  28. [28]
    Velík J., Baliharová V., Fink-Gremmels J., Bull S., Lamka J., Skálová L., Res. Vet. Sci., 2004, 76, 95CrossRefGoogle Scholar
  29. [29]
    Asensio J. A., Gomez-Romero P., Fuel Cells, 2005, 5, 336CrossRefGoogle Scholar
  30. [30]
    Anton V. D., Wai-Keung C., J. Heterocyclic. Chem., 2006, 43, 95CrossRefGoogle Scholar
  31. [31]
    Lee C., Yang W., Parr R. G., Phys. Rev. B, 1988, 37, 785CrossRefGoogle Scholar
  32. [32]
    Hohenberg P., Kohn W., Phys. Rev. B, 1964, 136, 864CrossRefGoogle Scholar
  33. [33]
    Kohn W., Rev. Mod. Phys., 1999, 71, 1253CrossRefGoogle Scholar
  34. [34]
    Kohn W., Becke A. D., Parr R. G., J. Phys. Chem., 1996, 100, 12974CrossRefGoogle Scholar
  35. [35]
    Barone V., Cossi M., J. Phys. Chem. A, 1998, 102, 1995CrossRefGoogle Scholar
  36. [36]
    Macícek J., Yordanov A., J. Appl. Cryst., 1992, 25, 73CrossRefGoogle Scholar
  37. [37]
    Duisenberg A. J. M., J. Appl. Cryst., 1992, 25, 92CrossRefGoogle Scholar
  38. [38]
    Harms K., XCAD4, Program for the Reduction of CAD4 Eiffraction Data, University of Marburg, Marburg, 1995Google Scholar
  39. [39]
    Farrugia L. J., J. Appl. Cryst., 1999, 32, 837CrossRefGoogle Scholar
  40. [40]
    Sheldrick G.M., Acta Cryst., 2008, 64, 112CrossRefGoogle Scholar
  41. [41]
    Brandenburg K., DIAMOND Demonstrated Version, Crystal Impact GbR, Bonn, 2005Google Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Chebbi Monia
    • 1
  • Chebbi Hammouda
    • 2
  • M’rabet Hedi
    • 3
  • Arfaoui Youssef
    • 1
  1. 1.Unit of Physical Chemistry of Condensed MaterialsUniversity of Tunis El-ManarTunisTunisia
  2. 2.Laboratory of Materials Crystallochemistry and Applied ThermodynamicUniversity of Tunis El-ManarTunisTunisia
  3. 3.Laboratory of Organic and Heterocyclic Synthesis, Department of Chemistry, Faculty of SciencesUniversity of Tunis El-ManarTunisTunisia

Personalised recommendations