Chemical Research in Chinese Universities

, Volume 33, Issue 5, pp 811–815 | Cite as

Heterogeneous h-BN@Cyclodextrin@Pd(II) nanomaterial: Fabrication, characterization and application as a highly efficient and recyclable catalyst for C—C coupling reactions

  • Rui Sang
  • Xu Cheng
  • Weijian Li
  • Pengfei Luo
  • Yong Zhang
  • Ruifang Nie
  • Li Hai
  • Yong Wu


An efficient and ligand-free method for the Suzuki and Heck cross-coupling reactions has been successfully developed using h-BN-supported palladium as the catalyst. This green methodology represents a cost-effective and operationally convenient process for the synthesis of biaryls, stilbenes and acrylates. Wide scope of substrates, good to excellent yields, low reaction time, water as solvent, ligand-free, non-toxicity and recyclability of the catalyst are the main merits of these protocols. In addition, the h-BN@γ-CD@Pd(II) nanomaterial has been fully characterized by TG, SEM, IR, XRD, XPS and ICP-AES analysis. And it could be easily recovered and reused for at least nine times without any considerable loss of catalytic activity. Above all, this work demonstrates the possibility of using cyclodextrin-modified h-BN as an efficient support for the hydrophilic heterogeneous catalysts.


Hexagonal boron nitride Cyclodextrin Heterogeneous catalysis C—C cross coupling Water 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

40242_2017_6455_MOESM1_ESM.pdf (3.1 mb)
Heterogeneous h-BN@cyclodextrin@Pd(II) nanomaterial: Fabrication, characterization and application as a highly efficient and recyclable catalyst for C-C coupling reactions


  1. [1]
    Golberg D., Bando Y., Huang Y., Terao T., Mitome M., Tang C. C., Zhi C. Y., ACS Nano, 2010, 4, 2979CrossRefGoogle Scholar
  2. [2]
    Sato K., Horibe H., Shirai T., Hotta Y., Nakano H., Nagai H., Mit-suishi K., Watari K.,J. Mater. Chem., 2010, 20, 2749CrossRefGoogle Scholar
  3. [3]
    Ishida H., Rimdusit S., Thermochim. Acta, 1998, 320, 177CrossRefGoogle Scholar
  4. [4]
    Xu Y. S., Chung D. D. L., Compos. Interfaces, 2000, 7, 243CrossRefGoogle Scholar
  5. [5]
    Morishita T., Matsushita M., Katagiri Y., Fukumori K., J. Mater. Chem., 2011, 21, 5610CrossRefGoogle Scholar
  6. [6]
    Yung K. C., Liem H., J. Appl. Polym. Sci., 2007, 106, 3587CrossRefGoogle Scholar
  7. [7]
    Li T. L., Hsu S. L. C., J. Phys. Chem. B., 2010, 114, 6825CrossRefGoogle Scholar
  8. [8]
    Wattanakul K., Manuspiya H., Yanumet N., J. Appl. Polym. Sci., 2011, 119, 3234CrossRefGoogle Scholar
  9. [9]
    Song L., Ci L. J., Lu H., Sorokin P. B., Jin C. H., Ni J., Kvashnin A. G., Kvashnin D. G., Lou J., Yakobson B. I., Ajayan P. M., Nano Lett., 2010, 10, 3209CrossRefGoogle Scholar
  10. [10]
    Golberg D., Bando Y., Huang Y., Xu Z., Wei X., Bourgeois L., Wang M. S., Zeng H., Lin J., Zhi C., Isr. J. Chem., 2010, 50, 405CrossRefGoogle Scholar
  11. [11]
    Ooi N., Rajan V., Gottlieb J., Catherine Y., Adams J. B., Mater. Sci. Eng., 2006, 14, 515Google Scholar
  12. [12]
    Hernández E., Goze C., Bernier P., Rubio A., Phys. Rev. Lett., 1998, 80, 4502CrossRefGoogle Scholar
  13. [13]
    Suryavanshi A. P., Yu M. F., Wen J., Tang C., Bando Y., Appl. Phys. Lett., 2004, 84, 2527CrossRefGoogle Scholar
  14. [14]
    Kim P., Shi L., Majumdar A., McEuen P., Phys. Rev. Lett., 2001, 87, 215502CrossRefGoogle Scholar
  15. [15]
    Blase X., Rubio A., Louie S. G., Cohen M. L., Europhys. Lett., 1994, 28, 335CrossRefGoogle Scholar
  16. [16]
    Watanabe K., Taniguchi T., Kanda H., Nat. Mater., 2004, 3, 404CrossRefGoogle Scholar
  17. [17]
    Lee G. W., Park M., Kim J., Lee J. I., Yoon H. G., Composites, Part A, 2006, 37, 727CrossRefGoogle Scholar
  18. [18]
    Pezzotti G., Kamada I., Miki S., J. Eur. Ceram. Soc., 2000, 20, 1197CrossRefGoogle Scholar
  19. [19]
    Kim K. K., Hsu A., Jia X., Kim S. M., Shi Y., Dresselhaus M., Pala-cios T., Kong J., ACS Nano, 2012, 6, 8583CrossRefGoogle Scholar
  20. [20]
    Leenders S. H. A. M., Gramage-Doria R., de Bruin B., Reek J. N. H., Chem. Soc. Rev., 2015, 44, 433CrossRefGoogle Scholar
  21. [21]
    Du Z., Shao Z., Chem. Soc. Rev., 2013, 42, 1337CrossRefGoogle Scholar
  22. [22]
    Du Bois M. R., Chem. Rev., 1989, 89, 1CrossRefGoogle Scholar
  23. [23]
    Han F. S., Chem. Soc. Rev., 2013, 42, 5270CrossRefGoogle Scholar
  24. [24]
    Kotha S., Lahiri K., Kashinath D., Tetrahedron., 2002, 58, 9633CrossRefGoogle Scholar
  25. [25]
    Zhou X. B., Chen M., Zheng Z. Y., Zhu G. Y., Jiang Z. H., Bai L. P., RSC Adv., 2017, 7, 26921CrossRefGoogle Scholar
  26. [26]
    Heck R. F., Nolley Jr J. P., J. Org. Chem., 1972, 37, 2320CrossRefGoogle Scholar
  27. [27]
    Cabri W., Candiani I., Acc. Chem. Res., 1995, 28, 2CrossRefGoogle Scholar
  28. [28]
    Beletskaya I. P., Cheprakov A. V., Chem. Rev., 2000, 100, 3009CrossRefGoogle Scholar
  29. [29]
    Cartney D. M., Guiry P. J., Chem. Soc. Rev., 2011, 40, 5122CrossRefGoogle Scholar
  30. [30]
    Leowanawat P., Zhang N., Safi M., Hoffman D., Fryberger M., George A., Percec V., J. Org. Chem., 2012, 77, 2885CrossRefGoogle Scholar
  31. [31]
    Suzuki A., Angew. Chem. Int. Ed., 2011, 50, 6722CrossRefGoogle Scholar
  32. [32]
    Beller M., Chem. Soc. Rev., 2011, 40, 4891CrossRefGoogle Scholar
  33. [33]
    Chinchilla R., Nájera C., Chem. Soc. Rev., 2011, 40, 5084CrossRefGoogle Scholar
  34. [34]
    Alsaber P. G., Stradiotto M., Angew. Chem. Int. Ed., 2013, 52, 7242CrossRefGoogle Scholar
  35. [35]
    Alsabeh P. G., Lundgren R. J., McDonald R., Johansson Seechurn C. C. C., Colacot T. J., Stradiotto M., Chem. Eur. J., 2013, 19, 2131CrossRefGoogle Scholar
  36. [36]
    Johansson Seechurn C. C. C., Kitching M. O., Colacot T. J., Snieckus V., Angew. Chem. Int. Ed., 2012, 51, 5062CrossRefGoogle Scholar
  37. [37]
    Li H. B., Johansson Seechurn C. C. C., Colacot T. J., ACS Catal., 2012, 2, 1147CrossRefGoogle Scholar
  38. [38]
    Schranck J., Tlili A., Neumann H., Alsabeh P. G., Stradiotto M., Beller M., Chem. Eur. J., 2012, 18, 15592CrossRefGoogle Scholar
  39. [39]
    Negishi E. I., Angew. Chem. Int. Ed., 2011, 50, 6738CrossRefGoogle Scholar
  40. [40]
    Fortman G. C., Nolan S. P., Chem. Soc. Rev., 2011, 40, 5151CrossRefGoogle Scholar
  41. [41]
    Molnar A., Chem. Rev., 2011, 111, 2251CrossRefGoogle Scholar
  42. [42]
    Zhang Y. M., Zhang J., Li X. F., Chu G., Tian M. M., Qun C. S., Chem. J. Chinese Universities, 2016, 37(3), 573Google Scholar
  43. [43]
    Zhou W. J., Zhou Y., Zhang X. Z., Zeng B., Chem. J. Chinese Universities, 2016, 37(4), 669CrossRefGoogle Scholar
  44. [44]
    Yin J., Ding S. M., Zeng L., Xia H., Chen C., Zhang N., Chem. J. Chinese Universities, 2015, 36(4), 720Google Scholar
  45. [45]
    Phan N. T. S., Van Der Sluys M., Jones C. W., Adv. Synth. Catal., 2006, 348, 609CrossRefGoogle Scholar
  46. [46]
    Andersen N. G., Keay B. A., Chem. Rev., 2001, 101, 997CrossRefGoogle Scholar
  47. [47]
    Martin R., Buchwald S. L., Acc. Chem. Res., 2008, 41, 1461CrossRefGoogle Scholar
  48. [48]
    Miyaura N., Suzuki A., Chem. Rev., 1995, 95, 2457CrossRefGoogle Scholar
  49. [49]
    Liu J., Alvarez J., Ong W., Roman E., Kaifer A. E., Langmuir, 2001, 17, 6762CrossRefGoogle Scholar
  50. [50]
    Mhadgut S. C., Palaniappan K., Thimmaiah M., Hackney S. A., Torok B., Liu J., Chem. Commun., 2005, 25, 3207CrossRefGoogle Scholar
  51. [51]
    Hapiot F., Tilloy S., Monflier E., Chem. Rev., 2006, 106, 767CrossRefGoogle Scholar
  52. [52]
    Machut C., Patrigeon J., Tilloy S., Bricout H., Hapiot F., Monflier E., Angew. Chem. Int. Ed., 2007, 46, 3040CrossRefGoogle Scholar
  53. [53]
    Zhang X. B., Wang Y., Yang S. T., Carbohydr. Polym., 2014, 114, 521CrossRefGoogle Scholar
  54. [54]
    Del Valle E. M. M., Process Biochem., 2004, 39, 1033CrossRefGoogle Scholar
  55. [55]
    Senra J. D., Malta L. F. B., Souza A. L. F., Aguiar L. C. S., Antunes O. A. C., Adv. Synth. Catal., 2008, 350, 2551CrossRefGoogle Scholar
  56. [56]
    Yabe Y., Yamada T., Nagata S., Sawama Y., Monguchi Y., Sajiki H., Adv. Synth. Catal., 2012, 354, 1264CrossRefGoogle Scholar
  57. [57]
    Yabe Y., Sawama Y., Monguchi Y., Sajiki H., Chem. Eur. J., 2013, 19, 484CrossRefGoogle Scholar
  58. [58]
    Uosaki K., Elumalai G., Noguchi H., Masuda T., Lyalin A., Nakaya-ma A., Taketsugu T., J. Am. Chem. Soc., 2014, 136, 6542CrossRefGoogle Scholar
  59. [59]
    Yabe Y., Sawama Y., Yamada T., Nagata S., Monguchi Y., Sajiki H., ChemCatChem., 2013, 5, 2360CrossRefGoogle Scholar
  60. [60]
    Meyer L., Devillers M., Hermans S., Catal. Today, 2015, 241, 200CrossRefGoogle Scholar
  61. [61]
    Meyer N., Bekaert K., Pirson D., Devillers M., Hermans S., Catal. Commun., 2012, 29, 170CrossRefGoogle Scholar
  62. [62]
    Kumar R., Gopalakrishnan K., Ahmad I., Rao C. N. R., Adv. Funct. Mater., 2015, 25, 5910CrossRefGoogle Scholar
  63. [63]
    Wu H. C., Kessler M. R., ACS Appl. Mater. Interfaces, 2015, 7, 5915CrossRefGoogle Scholar
  64. [64]
    Sainsbury T., Satti A., May P., O’Neill A., Nicolosi V., Gun’ko Y. K., Coleman J. N., Chem. Eur. J., 2012, 18, 10808CrossRefGoogle Scholar
  65. [65]
    Cui Z. H., Oyer A. J., Glover A. J., Schniepp H. C., Adamson D. H., Small, 2014, 10, 2352CrossRefGoogle Scholar
  66. [66]
    Oh K. H., Lee D., Choo M. J., Park K. H., Jeon S., Hong S. H., Park J. K., Choi J. W., ACS Appl. Mater. Interfaces, 2014, 6, 7751CrossRefGoogle Scholar
  67. [67]
    Cui Z. H., Martinezb A. P., Adamson D. H., Nanoscale, 2015, 7, 10193CrossRefGoogle Scholar
  68. [68]
    Yang N., Xu C., Hou J., Yao Y. M., Zhang Q. X., Grami M. E., He L. Q., Wang N. Y., Qu X. W., RSC Adv., 2016, 6, 18279CrossRefGoogle Scholar
  69. [69]
    Lei W. W., Mochalin V. N., Liu D., Qin S., Gogotsi Y., Chen Y., Nat. Commun., 2016, 6, 8849CrossRefGoogle Scholar
  70. [70]
    Prous J., Castaner J., Drugs Fut., 1987, 12, 120CrossRefGoogle Scholar
  71. [71]
    Zhu J., Zhu H., Kobamoto N., Yasuda M., Tawata S., J. Pestic. Sci., 2000, 25, 263CrossRefGoogle Scholar
  72. [72]
    Davis D. C., Mohammad H., Kyei-Baffour K., Younis W., Creemer C. N., Seleem M. N., Dai M. J., Eur. J. Med. Chem., 2015, 101, 384CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Key Laboratory of Drug Targeting and Drug Delivery System of Education Ministry, Department of Medicinal Chemistry, West China School of PharmacySichuan UniversityChengduP. R. China

Personalised recommendations