Advertisement

Chemical Research in Chinese Universities

, Volume 33, Issue 5, pp 816–821 | Cite as

Effect of synthetic method and reductant on the morphology and photocatalytic hydrogen evolution performance of Ru nanoparticles

  • Chao Kong
  • Yanxia Han
  • Lijie Hou
  • Dongping Chen
  • Bowan Wu
Article

Abstract

Ru nanoparticles were synthesized using the photoreduction and chemical reduction methods. Ru nanoparticles were used as a cocatalyst to develop a photocatalytic hydrogen evolution system sensitized by Eosin Y(EY), and the effects of the synthetic method and reductant on the morphology and photocatalytic hydrogen evolution performance of Ru nanoparticles were studied. The results indicated that Ru nanoparticles prepared by photoreduction and thermochemical reduction by ethanediol had a relatively uniform size, and the photoreduced Ru showed higher photocatalytic performance than Ru reduced by ethanediol and methanal. The amount of H2 evolution in 60 min over Ru(photoreduction)-EY was 1247.7 μmol, which was 13.6 and 14.3 times that over Ru prepared by chemical reduction methods under the same photoreaction conditions. The calculation of binding energies showed that a higher binding energy of Ru nanoparticles and glycol was one of the main reasons for the uniform size and low photocatalytic performance of Ru reduced by glycol. The results indicated that different preparation methods and reductants had a significant influence on the catalytic activity of Ru catalyst.

Keywords

Ruthenium Photocatalysis Hydrogen evolution Morphology Binding energy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Hornung A., Zemlyanov D., Muhler M., Ertl G., Surf. Sci., 2006, 600, 370CrossRefGoogle Scholar
  2. [2]
    Zhou X., Wu T., Hu B., Jiang T., Han B., J. Mol. Catal. A: Chem., 2009, 306, 143CrossRefGoogle Scholar
  3. [3]
    Lin W. F., Christensen P. A., Hamnett A., J. Phys. Chem. B, 2000, 104, 6642CrossRefGoogle Scholar
  4. [4]
    Chen G., Desinan S., Rosei R., Rosei F., Ma, D., Chem. Commun., 2012, 48, 8009CrossRefGoogle Scholar
  5. [5]
    Hara M., Nunoshiqe G., Takata T., Kondo J. N., Domen K., Chem. Commun., 2003, 24, 3000CrossRefGoogle Scholar
  6. [6]
    Yamada Y., Shikano S., Fukuzumi S., J. Phys. Chem. C, 2013, 117, 13143CrossRefGoogle Scholar
  7. [7]
    Koenigsmann C., Semple D. B., Sutter E., Tobierre S. E., Wong S. S., ACS Appl. Mater. Interfaces, 2013, 5, 5518CrossRefGoogle Scholar
  8. [8]
    Qadir K., Joo S. H., Mun B. S., Butcher D. R., Renzas J. R., Funda A., Liu Z., Somorjai G. A., Park J. Y., Nano Lett., 2012, 12, 5761CrossRefGoogle Scholar
  9. [9]
    Yin A. X., Liu W. C., Ke J., Zhu W., Gu J., Zhang Y. W., Yan C. H., J. Am. Chem. Soc., 2012, 134, 20479CrossRefGoogle Scholar
  10. [10]
    Viau G., Brayner R., Poul L., Chakroune N., Lacaze E., Fievet-Vincent F., Fievet F., Chem. Mater., 2003, 15, 486CrossRefGoogle Scholar
  11. [11]
    Chang X. X., Gong J. L., Acta Phys. Chim. Sin., 2016, 32, 2Google Scholar
  12. [12]
    Liu X., Li Y. X., Peng S. Q., Lai H., Acta Phys. Chim. Sin., 2015, 31, 612Google Scholar
  13. [13]
    Zhao S., Ren Y., Ren Y., Wang J., Yin W., J. Mol. Struc. Theochem., 2010, 955, 66CrossRefGoogle Scholar
  14. [14]
    Liu C., Zhang D., Gao M., Liu S., Chem. Res. Chinese Universities, 2015, 31(4), 597CrossRefGoogle Scholar
  15. [15]
    Zhang Y., Wang C., Zhang S., Li G., Chem. J. Chinese Universities, 2016, 37(12), 2260Google Scholar
  16. [16]
    Zhang Y., Li J., Huang X., Chem. J. Chinese Universities, 2016, 37(3), 534CrossRefGoogle Scholar
  17. [17]
    Liu J., Lv C., Jin C., Guo Y., Wang G., Chem. Res. Chinese Universities, 2016, 32(2), 234CrossRefGoogle Scholar
  18. [18]
    Kong C., Li Z., Lu G., Int. J. Hydrogen Energ., 2015, 40, 5824CrossRefGoogle Scholar
  19. [19]
    Xu Y., Xu R., Appl. Surf. Sci., 2015, 351, 779CrossRefGoogle Scholar
  20. [20]
    Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyata K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J. A.J., Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staroverov V. N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam J. M., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomeli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Dapprich S., Daniels A. D., Farkas O., Foresman J. B., Ortiz J. V., Cioslowski J., Fox D. J., Gaussian Inc., Wallingford CT, Gaussian 09, Revision D.01, 2009 Google Scholar
  21. [21]
    Cesar D. V., Santori G. F., Pompeo F., Baldanza M. A., Henriques C. A., Lombardo E., Schmal M., Cornaglia L., Nichio N. N., Int. J. Hydro. Energy, 2016, 41, 22000CrossRefGoogle Scholar
  22. [22]
    Li F., Gu Q., Niu Y., Wang R., Tong Y., Zhu S., Zhang H., Zhang Z., Wang X., Appl. Surf. Sci., 2017, 391, 251CrossRefGoogle Scholar
  23. [23]
    Zahmarkiran M., Tristany M., Philippot K., Fajerwerg K., Ozkar S., Chaudret B., Chem. Commun., 2010, 46, 2938CrossRefGoogle Scholar
  24. [24]
    Geletii Y. V., Huang Z., Hou Y., Musaev D. G., Lian T., Hill C. L., J. Am. Chem. Soc., 2009, 131, 7522CrossRefGoogle Scholar
  25. [25]
    Xu Y., Duan L., Tong L., Akermark B., Sun L., Chem. Commun., 2010, 46, 6506CrossRefGoogle Scholar
  26. [26]
    Lazarides T., McCormick T., Du P., Luo G., Lindley B., Eisenberg R., J. Am. Chem. Soc., 2009, 131, 9192CrossRefGoogle Scholar
  27. [27]
    Shimidzu T., Iyoda T., Koide Y., J. Am. Chem. Soc., 1985, 107, 35CrossRefGoogle Scholar
  28. [28]
    Cao S., Yu J., J. Photoch. Photobio. C, 2016, 27, 72CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Chao Kong
    • 1
  • Yanxia Han
    • 1
  • Lijie Hou
    • 1
  • Dongping Chen
    • 1
  • Bowan Wu
    • 1
  1. 1.College of Chemistry and Chemical EngineeringLongdong UniversityQingyangP. R. China

Personalised recommendations