Advertisement

Chemical Research in Chinese Universities

, Volume 33, Issue 5, pp 828–832 | Cite as

Molar surface Gibbs energy of the aqueous solution of ionic liquid [C4mim][OAc]

  • Jing Tong
  • Xu Zheng
  • Jian Tong
  • Ye Qu
  • Lu Liu
  • Hui Li
Article
  • 41 Downloads

Abstract

The values of density and surface tension for aqueous solution of ionic liquid(IL) 1-butyl-3-methylimidazolium acetate([C4mim][OAc]) with various molalities were measured in the range of 288.15—318.15 K at intervals of 5 K. On the basis of thermodynamics, a semi-empirical model-molar surface Gibbs energy model of the ionic liquid solution that could be used to predict the surface tension or molar volume of solutions was put forward. The predicted values of the surface tension for aqueous [C4mim][OAc] and the corresponding experimental ones were highly correlated and extremely similar. In terms of the concept of the molar Gibbs energy, a new Eötvös equation was obtained and each parameter of the new equation has a clear physical meaning.

Keywords

Ionic liquid Aqueous solution Molar surface Gibbs energy Density Surface tension 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

40242_2017_6386_MOESM1_ESM.pdf (283 kb)
The molar surface Gibbs energy of the aqueous solution of ionic liquid [C4mim][OAc]

References

  1. [1]
    Zhang S., Wang J., Lu X., Zhou Q., Structures and Interactions of Io-nic Liquids, Springer-Verlag, Berlin Heidelber., 2014Google Scholar
  2. [2]
    Armand M., Endres F., Douglas R., MacFarlane Hiroyuki O., Bruno Scrosati., Nat. Mater., 2009, 8, 621CrossRefGoogle Scholar
  3. [3]
    Shirota H., Mandai T., Fukazawa H., Kato T., J. Chem. Eng. Data, 2011, 56, 2453CrossRefGoogle Scholar
  4. [4]
    Hallett J. P., Welton T., Chem. Rev., 2011, 111, 3508CrossRefGoogle Scholar
  5. [5]
    Navia P., Troncoso J., Romaní L. J. Chem. Eng. Data, 2007, 52(4), 1369CrossRefGoogle Scholar
  6. [6]
    Jacquemin J., Ge R., Nancarrow P., David W.R., Margarida F. C. G., Agilio A. H. P., Hardacre C., J. Chem. Eng. Data, 2008, 53(3), 716CrossRefGoogle Scholar
  7. [7]
    Chen Z. J., Lee J. M., J. Phys. Chem. B, 2014, 118, 2712CrossRefGoogle Scholar
  8. [8]
    Knotts T. A., Wilding W. V., Oscarson J. L., Richard L. R., J. Chem. Eng. Data, 2001, 46(5), 1007CrossRefGoogle Scholar
  9. [9]
    Rocha M. A. A., Lima C. F. R. A. C., Gomes L. R., Schröder B., Coutinho J. A. P., Marrucho I. M., Esperança J. M. S. S., Rebelo L. P. N., Shimizu K., Lopes J. N. C., Santos L. M. N. B. F., J. Phys. Chem. B, 2011, 115, 10919CrossRefGoogle Scholar
  10. [10]
    Tong J., Ma X., Kong Y. X., Chen Y., Guan W., Yang J. Z., J. Phys. Chem. B, 2012, 116, 5971CrossRefGoogle Scholar
  11. [11]
    Klomfar J., Souckova M., Patek J., J. Chem. Eng. Data, 2010, 55(9), 4054CrossRefGoogle Scholar
  12. [12]
    Wang J. Y., Zhang X. J., Liu Y. M., Hu Y. Q., J. Chem. Eng. Data, 2011, 56(10), 3734CrossRefGoogle Scholar
  13. [13]
    Geppert-Rybczynska M., Lehmann J. K., Heintz A., J. Chem. Ther-modynamics, 2014, 71, 171CrossRefGoogle Scholar
  14. [14]
    Tong J., Hong M., Chen Y., Wang H., Yang J. Z., J. Chem. Eng. Data, 2012, 57(8), 2265CrossRefGoogle Scholar
  15. [15]
    Tong J., Yang H. X., Liu R. J., Li C., Xia L. X., Yang J. Z., J. Phys. Chem. B, 2014, 118, 12972CrossRefGoogle Scholar
  16. [16]
    Guan W., Tong J., Chen S. P., Liu Q. S., Gao S. L., J. Chem. Eng. Data, 2010, 55(9), 4075CrossRefGoogle Scholar
  17. [17]
    Tong J., Ma X., Kong Y. X., Chen Y., Guan W., Yang J. Z., J. Phys. Chem. B, 2012, 116, 5971CrossRefGoogle Scholar
  18. [18]
    Tong J., Liu Q. S., Kong Y. X., Fang D. W., Urs W. B., Yang J. Z., J. Chem. Eng. Data, 2010, 55(9), 3693CrossRefGoogle Scholar
  19. [19]
    Tong J., Qu Y., Li K., Chen T. F., Tong J., Yang J. Z., J. Chem. Ther-modynamics., 2016, 97, 362CrossRefGoogle Scholar
  20. [20]
    Tong J., Chen T. F., Zhang D., Wang L. F., Tong J., Yang J. Z., Acta Phys. Chim. Sin., 2016, 32(5), 1161Google Scholar
  21. [21]
    Lide D. R., Handbook of Chemistry and Physics, 82nd Ed., CRC Press, Boca Raton, 2001Google Scholar
  22. [22]
    Xu W. G., Li C., Liu R. J., Yang H. X., Tong J. Yang J. Z., Ind. Eng. Chem. Res., 2014, 53, 9959CrossRefGoogle Scholar
  23. [23]
    Tong J., Chen T. F., Wang L. F., Zhang D., Yang Q., Yang J. Z., J. Solution Chem., 2016, 45, 188CrossRefGoogle Scholar
  24. [24]
    Adamson A. W., Physical Chemistry of Surfaces, 3rd Ed., Translated by Gu T. R., Science Press, Beijing, 1986Google Scholar
  25. [25]
    Tong J., Liu Q. S., Zhang P., J. Chem. Eng. Data, 2007, 52(4), 1497CrossRefGoogle Scholar
  26. [26]
    Deetlefs M., Seddon K. R., Shara M., Phys. Chem. Chem. Phys., 2006, 8, 642CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Jing Tong
    • 1
  • Xu Zheng
    • 1
  • Jian Tong
    • 1
  • Ye Qu
    • 1
  • Lu Liu
    • 1
  • Hui Li
    • 1
  1. 1.College of ChemistryLiaoning UniversityShenyangP. R. China

Personalised recommendations