Thermodynamic reevaluation and experimental validation of the CsNO3-KNO3-NaNO3 system and its subsystems


Phase equilibria and thermodynamic properties of the CsNO3-KNO3-NaNO3 system and its three subsys-tems were optimized thermodynamically and validated experimentally. The liquid and end solid solution phases of the KNO3-NaNO3 and CsNO3-KNO3 systems were modeled using the substitutional solution and compound energy formalism models, respectively. The CsNO3-KNO3-NaNO3 ternary system was described thermodynamically based on the self-consistent thermodynamic parameters of the three binary systems. A set of thermodynamic parameters was obtained to reproduce the available information on the thermodynamic properties and phase equilibria. Melting temperature, enthalpy, and specific heat capacity of a eutectic sample were determined using differential scanning calorimetry(DSC). The results show a good consistency with the calculated results, suggesting the reliability of the current thermodynamic database. This work is useful for the construction of multicomponent nitrates and to provide guidance for the development of new medium for thermal energy storage.

This is a preview of subscription content, log in to check access.


  1. [1]

    Reddy R. G., Fluxes and Salts(Molten 12), The Chinese Society for Metals, Beijing, 2012, 1

  2. [2]

    Coscia K., Oztekin A., Mohapatra S., Neti S., Nelle S., Elliot T., Proceedings of the ASME 2012 Summer Heat Transfer Conference, Rio Grande, Puerto Rico, 2012, 1

  3. [3]

    Mendeleva S. V., Storonkin A. V., Vasil’kova I. V., Kozhina I. I., Vestn. Leningrad Univ., Ser. Fiz. Khim., 1973, 1, 167

    Google Scholar 

  4. [4]

    Jriri T., Rogez J., Mathieu J. C., Ansara I., J. Phase Equilib., 1999, 20(5), 515

    CAS  Article  Google Scholar 

  5. [5]

    Saunders N., Miodownik A., CALPHAD(Calculation of Phase Dia-grams): a Comprehensive Guide, Elsevier Science Ltd., Oxford, 1998, 1

    Google Scholar 

  6. [6]

    Yin H. Q., Wang K., Xie L. D., Han H., Wang W. F., Chem. Res. Chinese Universities, 2015, 31(3), 461

    CAS  Article  Google Scholar 

  7. [7]

    Yin H. Q., Wang K., Liu W. G., Xie L. D., Han H., Wang W. F., Chem. J. Chinese Universities, 2014, 35(12), 2668

    CAS  Google Scholar 

  8. [8]

    Bergman A. G., Vaksberg N. M., Izv. Akad. Nauk SSSR Otd. Mat. Est. Nauk, 1937, 1, 71

    Google Scholar 

  9. [9]

    Bergman A. G., Berul S. I., Izvest. SektoraFiz.——Khim. Anal., Inst. Obshch. Neorg. Khim. Akad. Nauk SSSR, 1952, 21, 178

    CAS  Google Scholar 

  10. [10]

    Kramer C. M., Wilson C. J., Thermochim. Acta, 1980, 42, 253

    CAS  Article  Google Scholar 

  11. [11]

    Klement W., J. Inorg. Nucl. Chem., 1974, 36, 1916

    CAS  Article  Google Scholar 

  12. [12]

    Ping W., Harrowell P., Byrne N., Angell C. A., Thermochim. Acta, 2009, 486, 27

    CAS  Article  Google Scholar 

  13. [13]

    Kleppa O. J., J. Chem. Phys.,1960, 64, 1937

    CAS  Article  Google Scholar 

  14. [14]

    Greis O., Bahamdan K. M., Uwais B. M., Thermochim. Acta, 1985, 86, 343

  15. [15]

    Zamali H., Jemal M., J. Therm. Anal., 1994, 41, 1091

  16. [16]

    Robelin C., Chartrand P., Pelton A. D., J. Chem. Thermodynamics, 2015, 83, 12

    CAS  Article  Google Scholar 

  17. [17]

    Zhang X. J., Tian J., Xu K. C., Gao Y. C., J. Phase Equilib., 2003, 24(5), 441

    CAS  Article  Google Scholar 

  18. [18]

    Benes O., Konings R. J. M., Wurzer S., Sierig M., Dockendorf A., Thermochim. Acta, 2010, 509, 62

    CAS  Article  Google Scholar 

  19. [19]

    Sangster J., J. Phase Equilib., 2000, 21(3), 241

    CAS  Article  Google Scholar 

  20. [20]

    Bolshakov K. A., Pokrovskii B. I., Plyushev V. E., TR: Russ. J. Inor-ganic Chem., 1961, 6, 1083

    Google Scholar 

  21. [21]

    Khvostova I. P., Efimov A. I., Susarev H. P., J. Appl. Chem. USSR., 1974, 47(5), 1175

    Google Scholar 

  22. [22]

    Nurminskii N. N., Diogenov G. G., Z. Neorg. Khim., 1960, 5(9), 2084

    CAS  Google Scholar 

  23. [23]

    Panieva L. A., Gabitova L. L., Protsenko P. I., Russ. J. Inorganic-Chem., 1968, 13(10), 1449

    Google Scholar 

  24. [24]

    Kirgintsev A. N., Aloi A. S., Kosyakov V. I., Radiokhimiya, 1971, 13(5), 665

    CAS  Google Scholar 

  25. [25]

    Kleppa O. J., Hersh L. S., J. Chem. Phys., 1961, 34(2), 351

    CAS  Article  Google Scholar 

  26. [26]

    Storonkin A.V., Vasil’kova I. V., Mendeleva S., Russ. J. Phys. Chem., 1973, 47(8), 1141

    Google Scholar 

  27. [27]

    Jriri T., Gilbert M., Rogez J., Mathieu J. C., Ann. Chim. Fr., 1994, 19, 121

    CAS  Google Scholar 

  28. [28]

    Cingolani A., Berchesi M. A., Piantoni G., Lecresi D., Z. Naturforsch. A, 1972, 27, 159

    CAS  Article  Google Scholar 

  29. [29]

    Protsenko A. B., Protsenko P. I., Eremina N. N., Zh. Neorg. Khim., 1971, 16(7), 2009

    CAS  Google Scholar 

  30. [30]

    ASTM E 1269-11, Standard Test Method for Determining Specific Heat Capacity by Differential Scanning Calorimetry

  31. [31]

    Serrano-López R., Fradera J., Cuesta-LópezS., Chem. Eng. Process., 2013, 73, 87

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Xuehui An.

Additional information

Supported by the National Natural Science Foundation of China(No.21406256), the Strategic Priority Research Program (No.XD02002400) and the Foundation of “Youth Innovation Promotion Association” of Chinese Academy of Sciences.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

An, X., Zhang, P., Cheng, J. et al. Thermodynamic reevaluation and experimental validation of the CsNO3-KNO3-NaNO3 system and its subsystems. Chem. Res. Chin. Univ. 33, 122–128 (2017).

Download citation


  • Thermal energy storage
  • Nitrate
  • Calphad
  • Phase diagram