Chemical Research in Chinese Universities

, Volume 33, Issue 1, pp 122–128 | Cite as

Thermodynamic reevaluation and experimental validation of the CsNO3-KNO3-NaNO3 system and its subsystems

  • Xuehui AnEmail author
  • Peng Zhang
  • Jinhui Cheng
  • Shuanglin Chen
  • Jianqiang Wang


Phase equilibria and thermodynamic properties of the CsNO3-KNO3-NaNO3 system and its three subsys-tems were optimized thermodynamically and validated experimentally. The liquid and end solid solution phases of the KNO3-NaNO3 and CsNO3-KNO3 systems were modeled using the substitutional solution and compound energy formalism models, respectively. The CsNO3-KNO3-NaNO3 ternary system was described thermodynamically based on the self-consistent thermodynamic parameters of the three binary systems. A set of thermodynamic parameters was obtained to reproduce the available information on the thermodynamic properties and phase equilibria. Melting temperature, enthalpy, and specific heat capacity of a eutectic sample were determined using differential scanning calorimetry(DSC). The results show a good consistency with the calculated results, suggesting the reliability of the current thermodynamic database. This work is useful for the construction of multicomponent nitrates and to provide guidance for the development of new medium for thermal energy storage.


Thermal energy storage Nitrate Calphad Phase diagram 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Reddy R. G., Fluxes and Salts(Molten 12), The Chinese Society for Metals, Beijing, 2012, 1Google Scholar
  2. [2]
    Coscia K., Oztekin A., Mohapatra S., Neti S., Nelle S., Elliot T., Proceedings of the ASME 2012 Summer Heat Transfer Conference, Rio Grande, Puerto Rico, 2012, 1Google Scholar
  3. [3]
    Mendeleva S. V., Storonkin A. V., Vasil’kova I. V., Kozhina I. I., Vestn. Leningrad Univ., Ser. Fiz. Khim., 1973, 1, 167Google Scholar
  4. [4]
    Jriri T., Rogez J., Mathieu J. C., Ansara I., J. Phase Equilib., 1999, 20(5), 515CrossRefGoogle Scholar
  5. [5]
    Saunders N., Miodownik A., CALPHAD(Calculation of Phase Dia-grams): a Comprehensive Guide, Elsevier Science Ltd., Oxford, 1998, 1Google Scholar
  6. [6]
    Yin H. Q., Wang K., Xie L. D., Han H., Wang W. F., Chem. Res. Chinese Universities, 2015, 31(3), 461CrossRefGoogle Scholar
  7. [7]
    Yin H. Q., Wang K., Liu W. G., Xie L. D., Han H., Wang W. F., Chem. J. Chinese Universities, 2014, 35(12), 2668Google Scholar
  8. [8]
    Bergman A. G., Vaksberg N. M., Izv. Akad. Nauk SSSR Otd. Mat. Est. Nauk, 1937, 1, 71Google Scholar
  9. [9]
    Bergman A. G., Berul S. I., Izvest. SektoraFiz.——Khim. Anal., Inst. Obshch. Neorg. Khim. Akad. Nauk SSSR, 1952, 21, 178Google Scholar
  10. [10]
    Kramer C. M., Wilson C. J., Thermochim. Acta, 1980, 42, 253CrossRefGoogle Scholar
  11. [11]
    Klement W., J. Inorg. Nucl. Chem., 1974, 36, 1916CrossRefGoogle Scholar
  12. [12]
    Ping W., Harrowell P., Byrne N., Angell C. A., Thermochim. Acta, 2009, 486, 27CrossRefGoogle Scholar
  13. [13]
    Kleppa O. J., J. Chem. Phys.,1960, 64, 1937CrossRefGoogle Scholar
  14. [14]
    Greis O., Bahamdan K. M., Uwais B. M., Thermochim. Acta, 1985, 86, 343Google Scholar
  15. [15]
    Zamali H., Jemal M., J. Therm. Anal., 1994, 41, 1091Google Scholar
  16. [16]
    Robelin C., Chartrand P., Pelton A. D., J. Chem. Thermodynamics, 2015, 83, 12CrossRefGoogle Scholar
  17. [17]
    Zhang X. J., Tian J., Xu K. C., Gao Y. C., J. Phase Equilib., 2003, 24(5), 441CrossRefGoogle Scholar
  18. [18]
    Benes O., Konings R. J. M., Wurzer S., Sierig M., Dockendorf A., Thermochim. Acta, 2010, 509, 62CrossRefGoogle Scholar
  19. [19]
    Sangster J., J. Phase Equilib., 2000, 21(3), 241CrossRefGoogle Scholar
  20. [20]
    Bolshakov K. A., Pokrovskii B. I., Plyushev V. E., TR: Russ. J. Inor-ganic Chem., 1961, 6, 1083Google Scholar
  21. [21]
    Khvostova I. P., Efimov A. I., Susarev H. P., J. Appl. Chem. USSR., 1974, 47(5), 1175Google Scholar
  22. [22]
    Nurminskii N. N., Diogenov G. G., Z. Neorg. Khim., 1960, 5(9), 2084Google Scholar
  23. [23]
    Panieva L. A., Gabitova L. L., Protsenko P. I., Russ. J. Inorganic-Chem., 1968, 13(10), 1449Google Scholar
  24. [24]
    Kirgintsev A. N., Aloi A. S., Kosyakov V. I., Radiokhimiya, 1971, 13(5), 665Google Scholar
  25. [25]
    Kleppa O. J., Hersh L. S., J. Chem. Phys., 1961, 34(2), 351CrossRefGoogle Scholar
  26. [26]
    Storonkin A.V., Vasil’kova I. V., Mendeleva S., Russ. J. Phys. Chem., 1973, 47(8), 1141Google Scholar
  27. [27]
    Jriri T., Gilbert M., Rogez J., Mathieu J. C., Ann. Chim. Fr., 1994, 19, 121Google Scholar
  28. [28]
    Cingolani A., Berchesi M. A., Piantoni G., Lecresi D., Z. Naturforsch. A, 1972, 27, 159CrossRefGoogle Scholar
  29. [29]
    Protsenko A. B., Protsenko P. I., Eremina N. N., Zh. Neorg. Khim., 1971, 16(7), 2009Google Scholar
  30. [30]
    ASTM E 1269-11, Standard Test Method for Determining Specific Heat Capacity by Differential Scanning CalorimetryGoogle Scholar
  31. [31]
    Serrano-López R., Fradera J., Cuesta-LópezS., Chem. Eng. Process., 2013, 73, 87CrossRefGoogle Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH 2017

Authors and Affiliations

  • Xuehui An
    • 1
    Email author
  • Peng Zhang
    • 1
  • Jinhui Cheng
    • 1
  • Shuanglin Chen
    • 2
    • 3
  • Jianqiang Wang
    • 1
  1. 1.Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghaiP. R. China
  2. 2.State Key Laboratory of Advanced Special SteelShanghai UniversityShanghaiP. R. China
  3. 3.CompuTherm., Limited Liability CompanyMadisonUSA

Personalised recommendations