Chemical Research in Chinese Universities

, Volume 32, Issue 6, pp 917–923 | Cite as

A convenient “turn on-off” phosphorescent nanosensor for detection of biotin based on quantum dots/CTAB

  • Xiaoxing Fang
  • Ji Zheng
  • Guiqin Yan


A switchable room-temperature phosphorescence(RTP) nanosensor based on an MPA-capped Mn-doped ZnS QDs/CTAB composite system(MPA=3-mercaptopropionic acid; CTAB=cetyltrimethyl ammonium bromide; QDs=quantum dots) was established for the detection of biotin. The phosphorescence intensity of QDs/CTAB could be regularly quenched with the increase of biotin. Under optimal conditions, this method yielded two linear ranges of 2―20 μg/L and 20―140 μg/L with respective correlation coefficients of 0.993 and 0.990, as well as a detection limit of 0.93 μg/L. Therefore, the analytical potential of the proposed nanosensor was evaluated by detecting biotin in urine and biotin tablets. This approach yielded satisfactory results because of the effective elimination of background fluorescence and light scattering from the sample matrix. This approach provides a practical method for biotin detection.


Biotin Nanosensor Quantum dot Room-temperature phosphorescence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

40242_2016_6219_MOESM1_ESM.pdf (370 kb)
Convenient “Turn on-off” Phosphorescent Nanosensor for Detection of Biotin Based on Quantum Dots/CTAB


  1. [1]
    Livaniou E., Costopoulou D., Vassiliadou I., Leondiadis L., Nyalala J. O., Ithakissios D. S., Evangelatos G. P., J. Chromatogr. A, 2000, 881(1), 331CrossRefGoogle Scholar
  2. [2]
    Ho J. A. A., Hung C. H., Anal. Chem., 2008, 80(16), 6405CrossRefGoogle Scholar
  3. [3]
    Coggeshall J. C., Heggers J. P., Robson M. C., Baker, H., Ann. N. Y. Acad. Sci. 1985, 447(1), 389CrossRefGoogle Scholar
  4. [4]
    Matsusue S., Kashihara S., Takeda H., Koizumi S., J. Parenter Enteral Nutr. 1985, 9(6), 760CrossRefGoogle Scholar
  5. [5]
    Wolf B., Feldman G. L., Am. J. Hum. Genet., 1982, 34(5), 699Google Scholar
  6. [6]
    Krause K. H., Kochen W., Berlit P., Bonjour J. P., Int. J. Vitam. Nutr. Res., 1984, 54(2/3), 217Google Scholar
  7. [7]
    Maebashi M., Makino Y., Furukawa Y., Ohinata K., Kimura S., Sato, T., J. Clin. Bionchem. Nutr. 1993, 15(1), 65CrossRefGoogle Scholar
  8. [8]
    Nagamine T., Saito S., Yamada S., Arai T., Takehara K., Fukui T., Scand. J. Gastroentero. 1993, 28(10), 899CrossRefGoogle Scholar
  9. [9]
    Kosugi A., Koizumi Y., Yanagida F., Udaka S., J. Biosci. Bioeng. 2000, 89(1), 90CrossRefGoogle Scholar
  10. [10]
    Kallakunta V. M., Staruch A., Mutus B., Bba-Gen. Subjects 2010, 1800(1), 23CrossRefGoogle Scholar
  11. [11]
    Kergaravat S. V., Gómez G. A., Fabiano S. N., Chávez T. I. L., Pividori M. I., Hernández S. R., Talanta, 2012, 97, 484CrossRefGoogle Scholar
  12. [12]
    Reyes F. D., Romero J. F., de Castro M. L., Anal. Chim. Acta, 2001, 436(1), 109CrossRefGoogle Scholar
  13. [13]
    Zerzanová A., Žižkovský V., Kucera R., Klimeš J., Jesenský I., Dohnal J., Barron D., J. Pharmacect Biomed. 2007, 45(5), 730CrossRefGoogle Scholar
  14. [14]
    Nojiri S., Kamata K., Nishijima M., J. Pharmacect Biomed. 1998, 16(8), 1357CrossRefGoogle Scholar
  15. [15]
    Zhang H., Li Y., Su X. G., Anal. Biochem., 2013, 442(2), 172CrossRefGoogle Scholar
  16. [16]
    Katz E., Willner I., Angew. Chem. Int. Ed. 2004, 43(45), 6042CrossRefGoogle Scholar
  17. [17]
    Wu P., Zhao T., Zhang J. Y., Wu L., Hou X. D., Anal. Chem., 2014, 86(20), 10078CrossRefGoogle Scholar
  18. [18]
    Han M. Y., Gao X. H., Su J. Z., Nie S. M., Nat. Biotechnol., 2001, 19(7), 631CrossRefGoogle Scholar
  19. [19]
    Biju V., Itoh T., Ishikawa M., Chem. Soc. Rev. 2010, 39(8), 3031CrossRefGoogle Scholar
  20. [20]
    Tang X. J., Wang J. H., Zhao K., Xue H. H., Ta C. H., Chem. Res. Chinese Universities, 2016, 32(4), 570CrossRefGoogle Scholar
  21. [21]
    Wu P., Yan X. P., Chem. Soc. Rev., 2013, 42(12), 5489CrossRefGoogle Scholar
  22. [22]
    Xie W. Y., Huang W. T., Luo H. Q., Li N. B., Analyst, 2012, 137(20), 4651CrossRefGoogle Scholar
  23. [23]
    Zheng J. J., Ji W. Y., Wang X. Y., Ikezawa M., Jing P. T., Liu X. Y., Li H. B., Zhao J. L., Masumoto Y., J. Phys. Chem. C 2010, 114(36), 15331CrossRefGoogle Scholar
  24. [24]
    Thakar R., Chen Y., Snee P. T., Nano Lett., 2007, 7(11), 3429CrossRefGoogle Scholar
  25. [25]
    Zhao T., Hou X., Xie Y. N., Wu L., Wu P., Analyst 2013, 138(21), 6589CrossRefGoogle Scholar
  26. [26]
    Chen H. Q., Fu J., Wang L., Ling B., Qian B. B., Chen J. G., Zhou C. L., Talanta, 2010, 83(1), 139CrossRefGoogle Scholar
  27. [27]
    Dong B. H., Cao L. X., Su G., Liu W., Qu H., Jiang D. X., J. Colloid Interf. Sci., 2009, 339(1), 78CrossRefGoogle Scholar
  28. [28]
    Shang Y., Qi L., Wu F. Y., Microchim. Acta, 2012, 177(3/4), 333CrossRefGoogle Scholar
  29. [29]
    Zhang B. H., Wu F. Y., Wu Y. M., Zhan X. S., J. Flouresc., 2010, 20(1), 243CrossRefGoogle Scholar
  30. [30]
    Huang D. W., Niu C. G., Wang X. Y., Lv X. X., Zeng G. M., Anal. Chem., 2013, 85(2), 1164CrossRefGoogle Scholar
  31. [31]
    Tu R. Y., Liu B. H., Wang Z. Y., Gao D. M., Wang F., Fang Q. L., Zhang Z. P., Anal. Chem., 2008, 80(9), 3458CrossRefGoogle Scholar
  32. [32]
    He Y., Wang H. F., Yan X. P., Anal. Chem., 2008, 80(10), 3832CrossRefGoogle Scholar
  33. [33]
    Sotelo-Gonzalez E., Fernandez-Argüelle M. T., Costa-Fernandez J. M., Sanz-Medel A., Anal. Chim. Acta 2012, 712, 120CrossRefGoogle Scholar
  34. [34]
    Wang H. F., Li Y., Wu Y. Y., He Y., Yan X. P., Chem. Eur. J., 2010, 16(43), 12988CrossRefGoogle Scholar
  35. [35]
    Zheng J., Fang X. X., Qin J., Zhang Z. F., Miao Y. M., Yan G. Q., New J. Chem., 2016, 40(4), 3857CrossRefGoogle Scholar
  36. [36]
    Zhao Y., Ma Y., Li H., Wang L., Anal. Chem. 2011, 84(1), 386CrossRefGoogle Scholar
  37. [37]
    Wu P., He Y., Wang H. F., Yan X. P., Anal. Chem., 2010, 82(4), 1427CrossRefGoogle Scholar
  38. [38]
    Zhu D., Jiang X., Zhao C., Sun X., Zhang J., Zhu J. J., Chem. Commun., 2010, 46(29), 5226CrossRefGoogle Scholar
  39. [39]
    Gao X., Tang G. C., Li Y., Su X. G., Anal. Chim. Acta, 2012, 743, 131CrossRefGoogle Scholar
  40. [40]
    He Y., Yan X. P., Sci. China Chem., 2011, 54(8), 1254CrossRefGoogle Scholar
  41. [41]
    Gao X., Niu L., Su X. G., J. Fluoresc., 2012, 22(1), 103CrossRefGoogle Scholar
  42. [42]
    He Y., Wang H. F., Yan X. P., Chem. Eur. J., 2009, 15(22), 5436CrossRefGoogle Scholar
  43. [43]
    Wu P., He Y., Wang H. F., Yan X. P., Anal. Chem., 2010, 82(4), 1427CrossRefGoogle Scholar
  44. [44]
    Liu Z. P., Liu L. L., Sun M. H., Su X. G., Biosens. Bioelectron, 2015, 65, 145CrossRefGoogle Scholar
  45. [45]
    Nolan E. M., Lippard S. J., Chem. Rev., 2008, 108(9), 3443CrossRefGoogle Scholar
  46. [46]
    Zhuang J. Q., Zhang X. D., Wang G., Li D. M., Yang W. S., Li T. J., J. Mater. Chem., 2003, 13(7), 1853CrossRefGoogle Scholar
  47. [47]
    Miao Y. M., Zhang Z. F., Gong Y., Zhang Q. D., Yan G. Q., Biosens. Bioelectron, 2014, 52(2), 271CrossRefGoogle Scholar
  48. [48]
    Chung J. H., Ah C. S., Jang D. J., J. Phys. Chem. B, 2001, 105(19), 4128CrossRefGoogle Scholar
  49. [49]
    Fang X. X., Zheng J., Yan G. Q., Chem. J. Chinese Universities, 2016, 37(8), 1435Google Scholar
  50. [50]
    Zhang Z. F., Miao Y. M., Zhang, Q. D., Yan G. Q., Anal. Biochem., 2015, 478, 90CrossRefGoogle Scholar
  51. [51]
    Li S. K., Zhang G. S., Foreign Medical Sciences(Volume of Biological Products), 1984, 7, 97Google Scholar
  52. [52]
    Liu Z. Q., Yin P. F., Gong H. P., Li P. P., Wang X. D., He Y. Q., J. Lumin., 2012, 132(9), 2484CrossRefGoogle Scholar
  53. [53]
    Zhou C. Y., Xi X. L., Yang P., Biochemistry(Moscow) 2007, 72(1), 37Google Scholar

Copyright information

© Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH 2016

Authors and Affiliations

  1. 1.School of Life ScienceShanxi Normal UniversityLinfenP. R. China

Personalised recommendations