Skip to main content
Log in

Characterization and mechanism elucidation of dye adsorption using cuprous selenide nanoparticles from aqueous solutions

  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

The removal of cationic dyes, methylene blue(MB) and rhodamine B(RB), and anionic dyes, methyl orange(MO) and eosin Y(EY), from aqueous solutions by adsorption using Cu2Se nanoparticles(Cu2SeNPs) was stu-died. The effects of the initial pH values, adsorbent doses, contact time, initial dye concentrations, salt concentrations, and operation temperatures on the adsorption capacities were investigated. The adsorption process was better fitted the Langmuir equation and pseudo-second-order kinetic model, and was spontaneous and endothermic as well. The adsorption mechanism was probably based on the electrostatic interactions and π-π interactions between Cu2SeNPs and dyes. For an adsorbent of 0.4 g/L of Cu2SeNPs, the adsorption capacities of 23.1(MB), 22.9(RB) and 23.9(EY) mg/g were achieved, respectively, with an initial dye concentration of 10 mg/g(pH=8 for MB and pH=4 for RB and EY) and a contact time of 120 min. The removal rate of MB was still 70.4% for Cu2SeNPs being reused in the 5th cycle. Furthermore, the recycled Cu2SeNPs produced from selenium nanoparticles adsorbing copper were also an ef-fective adsorbent for the removal of dyes. Cu2SeNPs showed great potential as a new adsorbent for dyes removal due to its good stability, functionalization and reusability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dotto G. L., Santos J. M. N., Rodrigues I. L., Rosa R., Pavan F. A., Lima E. C., J. Colloid Interface Sci., 2015, 446, 133

    Article  CAS  Google Scholar 

  2. Yagub M. T., Sen T. K., Afroze S., Ang H. M., Adv. Colloid Interface Sci., 2014, 209, 172

    Article  CAS  Google Scholar 

  3. Chen Z., Zhang J., Fu J., Wang M., Wang X., Han R., Xu Q., J. Ha-zard. Mater., 2014, 273, 263

    Article  CAS  Google Scholar 

  4. Shah V., Garg N., Madamwar D., World J. Microbiol. Biotechnol., 2001, 17(5), 499

    Article  CAS  Google Scholar 

  5. Noubactep C., J. Hazard. Mater., 2009, 166(1), 79

    Article  CAS  Google Scholar 

  6. Yener N., Bicer C., Onal M., Sarikaya Y., Appl. Surf. Sci., 2012, 258(7), 2534

    Article  CAS  Google Scholar 

  7. He H., Miao Y., Du Y., Zhao J., Liu Y., Yang P., Ceram. Int., 2016, 42(1), 97

    Article  CAS  Google Scholar 

  8. Sajab M. S., Chia C. H., Zakaria S., Khiew P. S., Bioresour. Technol., 2013, 128, 571

    Article  CAS  Google Scholar 

  9. Widchaya R., Araya T., Ratchaneekorn W., Chem. Res. Chinese Universities, 2014, 30(1), 149

    Article  CAS  Google Scholar 

  10. Ai L., Zhang C., Liao F., Wang Y., Li M., Meng L., Jiang J., J. Hazard. Mater., 2011, 198, 282

    Article  CAS  Google Scholar 

  11. Afkhami A., Norooz-Asl R., Colloids and Surfaces A: Korean J. Chem. Eng., 2009, 346(1), 52

    Article  CAS  Google Scholar 

  12. Chen J., Hao Y., Liu Y., Gou J., RSC Adv., 2013, 3(20), 7254

    Article  CAS  Google Scholar 

  13. Gui C. X., Li Q. J., Lv L. L., Qu J., Wang Q. Q., Hao S. M., Yu Z. Z., RSC Adv., 2015, 5(26), 20440

    Article  CAS  Google Scholar 

  14. Jiang L., Zhang C., Wei J., Tjiu W., Pan J., Chen Y., Liu T., Chem. Res. Chinese Universities, 2014, 30(6), 971

    Article  CAS  Google Scholar 

  15. Bai Y., Rong F., Wang H., Zhou Y., Xie X., Teng J., J. Chem. Eng. Data, 2011, 56(5), 2563

    Article  CAS  Google Scholar 

  16. Huang L., Tong X., Li Y., Teng J., Bai Y., J. Chem. Eng. Data, 2014, 60(1), 151

    Article  Google Scholar 

  17. Rong F., Bai Y., Chen T., Zheng W., Mater. Res. Bull., 2012, 47(1), 92

    Article  CAS  Google Scholar 

  18. He G., Peng H., Liu T., Yang M., Zhang Y., Fang Y., J. Mater. Chem., 2009, 19(39), 7347

    Article  CAS  Google Scholar 

  19. Luo J., Yu N., Xiao Z., Long C., Macharia D. K., Xu W., Zhang L., Zhu M., Chen Z., J. Alloys Compd., 2015, 648, 98

    Article  CAS  Google Scholar 

  20. Leng L., Yuan X., Zeng G., Shao J., Chen X., Wu Z., Wang H., Peng X., Fuel, 2015, 155, 77

    Article  CAS  Google Scholar 

  21. Peng L., Qin P., Lei M., Zeng Q., Song H., Yang J., Shao J., Liao B., Gu J., J. Hazard. Mater., 2012, 209, 193

    Article  Google Scholar 

  22. Hall K. R., Eagleton L. C., Acrivos A., Vermeulen T., Ind. Eng. Chem. Fundam., 1966, 5(2), 212

    Article  CAS  Google Scholar 

  23. Hao Y. M., Man C., Hu Z. B., J. Hazard. Mater., 2010, 184(1), 392

    Article  CAS  Google Scholar 

  24. Belala Z., Jeguirim M., Belhachemi M., Addoun F., Trouve G., Desa-lination, 2011, 271(1-3), 80

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Bai.

Additional information

Supported by the National Natural Science Foundation of China(No.21075053).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Liu, Z., Huang, L. et al. Characterization and mechanism elucidation of dye adsorption using cuprous selenide nanoparticles from aqueous solutions. Chem. Res. Chin. Univ. 32, 1010–1015 (2016). https://doi.org/10.1007/s40242-016-6116-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-016-6116-4

Keywords

Navigation