Skip to main content
Log in

Studies on optical properties of Si220 nanoclusters via time-dependent density functional theory calculations

  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

The optical properties of bare and hydrogen passivated Si220 nanoclusters(NCs) in four typical motifs(i.e., bulk-like, onion-like, bucky-diamond and icosahedral motifs) were studied via time-dependent density functional theory(TD-DFT) calculations. The calculation results show that there is a significant blue shift in the optical absorption spectra when the Si NCs are passivated with hydrogen. A strong absorption peak in the visible light region appears for the hydrogenated bulk-like, onion-like and bucky-diamond Si NCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kim S. K., Cho C. H., Kim B. H., Park S. J., Lee J. W., Appl. Phys. Lett., 2009, 95, 143120

    Article  Google Scholar 

  2. Fujio K., Fujii M., Sumida K., Hayashi S., Fujisawa M., Ohta H., Appl. Phys. Lett., 2008, 93, 021920

    Article  Google Scholar 

  3. Fujii M., Mimura A., Hayashi S., Yamamoto K., Appl. Phys. Lett., 1999, 75, 184

    Article  CAS  Google Scholar 

  4. He Y., Kang Z. H., Li Q. S., Tsang C. H. A., Fan C. H., Lee S. T., Angew. Chem. Int. Ed., 2008, 48, 128

    Article  Google Scholar 

  5. Yong K. T., Ding H., Roy L., Law W. C., Bergey E. J., Maitra A., Prasad P. N., ACS Nano, 2009, 3, 502

    Article  CAS  Google Scholar 

  6. Huang S., Banerjee S., Tung R. T., Oda S., J. Appl. Phys., 2003, 93, 576

    Article  CAS  Google Scholar 

  7. Hirscheman K. D., Tsybeskov L., Duttagupta S. P., Fauchet P. M., Nature, 1996, 384, 338

    Article  Google Scholar 

  8. Wang M. H., Li D. S., Yuan A., Yang D. R., Que D. L., Appl. Phys. Lett., 2007, 90, 131903

    Article  Google Scholar 

  9. He Y., Zhong Y. L., Peng F., Wei X. P., Su Y. Y., Lu Y. M., Su S., Qu W., Liao L. S., Lee S. T., J. Am. Chem. Soc., 2011, 133, 14192

    Article  CAS  Google Scholar 

  10. Erogbogbo F., Yong K. T., Roy I., Hu R., Law W. G., Zhao W., Ding H., Wu P., Kumar R., Swihart M. T., Prasad P. N., ACS Nano, 2011, 5, 413

    Article  CAS  Google Scholar 

  11. Baldwin R. K., Pettigrew K. A., Garno J. C., Power P. P., Liu G. Y., Kauzlarich S. M., J. Am. Chem. Soc., 2002, 124, 1150

    Article  CAS  Google Scholar 

  12. Wilcoxon J., Samara G., Provencio P., Phys. Rev. B: Condens. Mat-ter., 1999, 60, 2704

    Article  CAS  Google Scholar 

  13. Brongersma M. L., Kik P. G., Polman A., Appl. Phys. Lett., 2000, 76, 351

    Article  CAS  Google Scholar 

  14. Antonova I. V., Gulyaev M., Savir E., Jedrzejewski J., Balberg I., Phys. Rev. B: Condens. Matter., 2008, 77, 125318

    Article  Google Scholar 

  15. Sublemontier O., Lacour F., Leconte Y., Herlin-boime N., Reynaud C., J. Alloys. Compd., 2009, 483, 499

    Article  CAS  Google Scholar 

  16. Puzder A., Williamson A. J., Reboredo F. A., Galli G., Phys. Rev. Lett., 2003, 91, 157405

    Article  Google Scholar 

  17. Lu H. D., Zhao Y. J., Yang X. B., Xu H., Phys. Rev. B: Condens. Matter., 2012, 86, 085440

    Article  Google Scholar 

  18. Williamson A. J., Grossman J. C., Hood R. Q., Puzder A., Galli G., Phys. Rev. Lett., 2002, 89, 196803

    Article  Google Scholar 

  19. Li Z. F., Ruckenstein E., Nano Lett., 2004, 4, 1463

    Article  CAS  Google Scholar 

  20. Rosso-Vasic M., Spruijt E., van Lagen B., de Cola L., Zuilhof H., Small, 2008, 4, 1835

    Article  CAS  Google Scholar 

  21. Shiohara A., Hanada S., Prabakar S., Dujioka K., Lim T. H., Yama-moto K., Northcote P. T., Tilley R. D., J. Am. Chem. Soc., 2010, 132, 248

    Article  CAS  Google Scholar 

  22. Wolkin M. V., Jorne J., Fauchet P. M., Allan G., Delerue C., Phys. Rev. Lett., 1999, 82, 197

    Article  CAS  Google Scholar 

  23. Rechtsteiner G. A., Hampe O., Jarrold M. F., J. Phys. Chem. B, 2001, 105, 4188

    Article  CAS  Google Scholar 

  24. Zhou Z., Brus L., Friesner R., Nano Lett., 2003, 3, 163

    Article  CAS  Google Scholar 

  25. Qi W. H., Lee S. T., Chem. Phys. Lett., 2009, 483, 247

    Article  CAS  Google Scholar 

  26. Nishida M., Phys. Rev. B: Condens. Matter., 2004, 70, 113303

    Article  Google Scholar 

  27. Ma J., Wei S. H., Phys. Rev. B: Condens. Matter., 2013, 87, 115318

    Article  Google Scholar 

  28. Khoo K. H., Zayak A. T., Kwak H., Chelikowsky J. R., Phys. Rev. Let., 2010, 105, 115504

    Article  CAS  Google Scholar 

  29. Khoo K. H., Chelikowsky J. R., Phys Rev B: Condens. Matter., 2014, 89, 195309

    Article  Google Scholar 

  30. Pi X. D., Delerue C., Phys. Rev. Lett., 2013, 111, 177402

    Article  Google Scholar 

  31. Zhou S., Pi X. D., Ni Z. Y., Ding Y., Jiang Y. Y., Jin C. H., Delerue C., Yang D., Nozaki T., ACS Nano, 2015, 9, 378

    Article  CAS  Google Scholar 

  32. Rowe D. J., Jeong J. S., Mkhoyan K. A., Kortshagen U. R., Nano Lett., 2013, 13, 1317

    Article  CAS  Google Scholar 

  33. Yang W. H., Lu W. C., Wang C. Z., Ho K. M., J. Phys. Chem. C, 2016, 120, 1966

    Article  CAS  Google Scholar 

  34. Vanderbilt D., Phys. Rev. B: Condens. Matter., 1990, 41, 7892

    Article  Google Scholar 

  35. Milman V., Winkler B., White J. A., Pickard C. J., Payne M. C., Akhmatskaya E. V., Nobes R. H. Int. J. Quantum Chem., 2000, 77, 895

    Article  CAS  Google Scholar 

  36. Payne M. C., Teter M. P., Allan D. C., Arias T. A., Joannopoulos J. D., Rev. Mod. Phys., 1992, 64, 1045

    Article  CAS  Google Scholar 

  37. Perdew J. P., Burke K., Ernzerhof M., Phys. Rev. Let., 1996, 77, 3865

    Article  CAS  Google Scholar 

  38. Weissker H. C., Furthmuller J., Bechstedt F., Phys. Rev. B: Condens. Matter., 2004, 69, 115310

    Article  Google Scholar 

  39. Furukawa S., Miyasato T., Phys. Rev. B: Condens. Matter., 1988, 38, 57266

    Article  Google Scholar 

  40. Benedict L. X., Puzder A., Williamson A. J., Grossman J. C., Galli G., Klepeis J. E., Raty J. Y., Pankratov O., Phys. Rev. B: Condens. Matter., 2003, 68, 085310

    Article  Google Scholar 

  41. Ramos L. E., Paler J., Kresse G., Bechetedt F., Phys. Rev. B: Condens. Matter., 2008, 78, 195423

    Article  Google Scholar 

  42. Ni Z. Y., Pi X. D., Yang D. R., Phys. Rev. B: Condens. Matter., 2014, 89, 035312

    Article  Google Scholar 

  43. Vasiliev I., Ogut S., Chelikowsky J. R., Phys. Rev. Lett., 2001, 86, 1813

    Article  CAS  Google Scholar 

  44. Delley B., Steigmeier E. F., Phys. Rev. B: Condens. Matter., 1992, 47, 1397

    Article  Google Scholar 

  45. Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J. A. Jr., Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staroverov V. N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam J. M., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Dapprich S., Daniels A. D., Farkas Ö., Foresman J. B., Ortiz J. V., Cioslowski J., Fox D. J., Gaussian 09, Revision E.01, Gaussian Inc., Wallingford CT, 2009

    Google Scholar 

  46. Lu W. C., Wang C. Z., Zhao L. Z., Qin W., Ho K. M. Phys. Rev. B: Condens. Matter., 2015, 92, 035206

    Article  Google Scholar 

  47. Wilcoxon J. P., Samara G., Provencio P. N., Phys. Rev. B: Condens. Matter., 1999, 60, 2704

    Article  CAS  Google Scholar 

  48. Sze S. M., Physics of Semiconductor Devices, Chap. 2 and Refer-ences Thertin, Wiley Interscience, New York, 1969

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wencai Lü.

Additional information

Supported by the National Natural Science Foundation of China(No.21273122).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, W., Lü, W., Xue, X. et al. Studies on optical properties of Si220 nanoclusters via time-dependent density functional theory calculations. Chem. Res. Chin. Univ. 32, 1028–1033 (2016). https://doi.org/10.1007/s40242-016-6085-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-016-6085-7

Keywords

Navigation