Skip to main content
Log in

Effect of support calcination temperature on Ag structure and catalytic activity for CO oxidation

  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

SiO2 with different nanostructures, namely hexagonal mesoporous silica(HMS), and three unordered commercial silica, were used as supports to fabricate silver catalysts using an incipient wetness impregnation method. It was found that Ag/HMS catalyst showed a high catalytic activity. Next, the HMS support was calcined at different temperatures before impregnation of AgNO3. The effect of calcination temperature of HMS support was investigated in terms of structure and catalytic activity of Ag catalysts. The support and catalysts were characterized by N2 adsorption-desorption isotherms, Thermogravimetric-differential thermal analyzer, X-ray diffraction, H2-temperature program reduction and transmission electron microscopy. The results showed that calcination of HMS at an appropriate temperature(750 °C) before catalyst preparation would benefit the formation of highly dispersive small sized Ag particles on the HMS support and markedly enhance the catalytic activity of Ag/HMS catalyst toward CO oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jernigan G. G., Somorjai G. A., J. Catal., 1994, 147, 567

    Article  CAS  Google Scholar 

  2. Cuong N. D., Khieu D. Q., Hoa T. T., Quang D. T., Viet P. H., Lam T. D., Hoa N. D., Hieu N. V., Mater. Res. Bull., 2015, 68, 302

    Article  CAS  Google Scholar 

  3. Kageyama S., Sugano Y., Hamaguchi Y., Kugai J., Ohkubo Y., Seino S., Nakagawa T., Ichikawa S., Yamamoto T. A., Mater. Res. Bull., 2013, 48, 1347

    Article  CAS  Google Scholar 

  4. Zhang X. D., Dong H., Gu Z. J., Wang G., Zuo Y. H., Wang Y. G., Cui L. F., Chem. Eng. J., 2015, 269, 94

    Article  CAS  Google Scholar 

  5. Dong Q., Yin S., Guo C. S., Wu X. Y., Kimura T., Sato T., Mater. Res. Bull., 2013, 48, 4989

    Article  CAS  Google Scholar 

  6. Xu X. Y., Li J. J., Hao Z. P., Zhao W., Hu C., Mater. Res. Bull., 2006, 41, 406

    Article  CAS  Google Scholar 

  7. Qu Z. P., Zhang X. D., Yu F. L., Liu X. C., Fu Q., J. Catal., 2015, 321, 113

    Article  CAS  Google Scholar 

  8. Zhang X. D., Qu Z. P., Yu F. L., Wang Y., J. Catal., 2013, 297, 264

    Article  CAS  Google Scholar 

  9. Menacherry P. V., Fernandez-Garcia M., Haller G. L., J. Catal., 1997, 166, 75

    Article  CAS  Google Scholar 

  10. Bore M. T., Pham H. N., Ward T. L., Datye A. K., Chem. Commun., 2004, 2620

    Google Scholar 

  11. Zhang X. D., Qu Z. P., Jia J. J., Wang Y., Powder Technol., 2012, 230, 212

    Article  CAS  Google Scholar 

  12. Qu Z. P., Zhang X. D., Yu F. L., Jia J. X., Micro. Meso. Mater., 2014, 188, 1

    Article  CAS  Google Scholar 

  13. Qu Z. P., Huang W. X., Zhou S. T., Zheng H., Liu X. M., Cheng M. J., Bao X. H., J. Catal., 2005, 234, 33

    Article  CAS  Google Scholar 

  14. Bagshaw S. A., Prouzet E., Pinnavaia T. J., Science, 1995, 269, 1242

    Article  Google Scholar 

  15. Li X. F., Gao H. X., Jin G. J., Chen L., Ding L., Yang H. Y., Chen Q. L., J. Mol. Struct., 2008, 872, 10

    Article  CAS  Google Scholar 

  16. Chiranjeevi T., Kumar P., Maity S. K., Rana M. S., Murali Dhar G., Prasada Rao T. S. R., Micro. Meso. Mater., 2001, 44, 547

    Article  Google Scholar 

  17. Sing K. S. W., Everett D. H., Haul R. A. W., Moscow L., Pierotti R. A., Ronquerol J., Pure Appl. Chem., 1985, 57, 603

    Article  CAS  Google Scholar 

  18. Zhang X. D., Qu Z. P., Li X. Y., Zhao Q. D., Zhang X., Quan X., Mater. Lett., 2011, 65, 1892

    Article  CAS  Google Scholar 

  19. Yu J., Mao D. S., Guo Q. S., Han L. P., Lu G. Z., Acta Phys. Chim. Sin., 2012, 28, 667

    Google Scholar 

  20. Qu Z. P., Zhang X. D., Lv Y., Quan X., Fu Q., J. Nanosci. Nanotech., 2013, 13, 4573

    Article  CAS  Google Scholar 

  21. Montesinos-Castellanos A., Zepeda T. A., Micro. Meso. Mater., 2008, 113, 146

    Article  CAS  Google Scholar 

  22. Zhang X. D., Qu Z. P., Li X. Y., Zhao Q. D., Zhang X., Quan X., Catal. Commun., 2011, 16, 11

    Article  CAS  Google Scholar 

  23. Citrin P. H., Wertheim C. K., Baer T., Phys. Rev. B, 1983, 27, 3160

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaodong Zhang or Lifeng Cui.

Additional information

Supported by the National Natural Science Foundation of China(Nos.21507086, 11305099, 41473108), the Shanghai Sailing Program, China(No.14YF1409900) and the Hujiang Foundation Research Base Program, China(Nos.B14003, D14004).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Dong, H., Zhao, D. et al. Effect of support calcination temperature on Ag structure and catalytic activity for CO oxidation. Chem. Res. Chin. Univ. 32, 455–460 (2016). https://doi.org/10.1007/s40242-016-5377-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-016-5377-2

Keywords

Navigation